The Move-To-Front Rule for Self-Organizing Lists with Markov Dependent Requests

  • Robert P. Dobrow
  • James Allen Fill
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 72)


We consider the move-to-front self-organizing linear search heuristic where the sequence of record requests is a Markov chain. Formulas are derived for the transition probabilities and stationary distribution of the permutation chain. The spectral structure of the chain is presented explicitly. Bounds on the discrepancy from stationarity for the permutation chain are computed in terms of the corresponding discrepancy for the request chain, both for separation and for total variation distance.

Key words

Markov chains self-organizing search move-to-front rule convergence to stationarity separation total variation distance coupling 

AMS(MOS) subject classifications




68PI0, 68P05


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldous D., and Diaconis, P. (1986). Shuffling cards and stopping times. Amer. Math. Monthly 93 333–347.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Aldous D., and Diaconis, P. (1987). Strong uniform times and finite random walks. Adv. in Appl. Math. 8 69–97.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bentley J. L., and McGeoch, C. C. (1985). Amortized analyses of self-organizing sequential search heuristics. Comm. ACM 29 404–411.CrossRefGoogle Scholar
  4. Bitner, J. R. (1979). Heuristics that dynamically organize data structures. SIAM J. Comp. 8 82–110.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Broder A. Z., and Karlin, A. R. (1989). Bounds on the cover time. J. Theo. Prob. 2 101–120.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Chung, K. L. (1974). A Course in Probability Theory, 2nd edition. Academic Press, New York.zbMATHGoogle Scholar
  7. Diaconis, P. (1993). Notes on the weighted rearrangement process. Unpublished manuscript.Google Scholar
  8. Diaconis P., and Fill, J. A. (1990). Strong stationary times via a new form of duality. Ann. Prob. 18 1483–1522.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Diaconis P., Fill J. A., and Pitman, J. (1992). Analysis of top to random shuffles. Comb., Prob. and Comp. 1 135–155.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Dobrow, R. P. (1994). Markov chain analysis of some self-organizing schemes for lists and trees. Ph.D. dissertation, Department of Mathematical Sciences, The Johns Hopkins University.Google Scholar
  11. Feller, W. (1968). An Introduction to Probability Theory and Its Applications,Vol. I. John Wiley & Sons, New York.zbMATHGoogle Scholar
  12. Fill, J. A. (1995). An exact formula for the move-to-front rule for self-organizing lists. J. Theo. Prob.,to appear.Google Scholar
  13. Hendricks, W. J. (1989). Self-organizing Markov Chains. MITRE Corp., McLean, Va.Google Scholar
  14. Hester J. H., and Hirschberg, D. S. (1985). Self-organizing linear search. Comp. Surveys 17 295–311.CrossRefGoogle Scholar
  15. Kapoor S., and Reingold, E. M. (1991). Stochastic rearrangement rules for self-organizing data structures. Algorithmica 6 278–291.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Knuth, D. (1973). The Art of Computer Programming, Searching and Sorting, Vol. III. Addison-Wesley, Reading, Mass.Google Scholar
  17. Konnecker L. K., and Varol, Y. L. (1981). A note on heuristics for dynamic organization of data structures. Info. Proc. Lett. 12 213–216.CrossRefGoogle Scholar
  18. Lam K., Leung, M.-Y., and Siu, M.-K. (1984). Self-organizing files with dependent accesses. J. Appl. Prob. 21 343–359.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Phatarfod R. M., and Dyte, D. (1993). The linear search problem with Markov dependent requests. Preprint.Google Scholar
  20. Rivest R. (1978). On self-organizing sequential search heuristics. Comm. ACM 19 63–67.MathSciNetCrossRefGoogle Scholar
  21. Rodrigues, E.R. (1993) The performance of the move-to-front scheme under some particular forms of Markov requests. Preprint.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Robert P. Dobrow
    • 1
  • James Allen Fill
    • 2
  1. 1.NISTGaithersburgUSA
  2. 2.The Department of Mathematical SciencesJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations