Skip to main content

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 21))

Abstract

In this paper a trace perturbation formula for scattering by obstacles is proved. The main application of this formula concerns high energy asymptotics for scattering phases (or Krein spectral shift functions). In particular we prove a Weyl type asymptotic for obstacle problems with arbitrary geometry, in any dimension, extending a result proved by R. Melrose in odd dimension.

For example, let us consider in the Euclidean plane ℝ2 a compact obstacle K and the Laplace-Dirichlet problem in the domain Ω = ℝ2\K, denoted by P Ω. Then the scattering phase s(λ) for the pair \(({P_\Omega },{P_{{\mathbb{R}^2}}})\) satisfies

$$s(\lambda ) = \frac{{Area(K)}}{{4\pi }}\lambda + o(\lambda )as\lambda \to + \infty $$

, without any smoothness assumption on K. If the boundary of K is smooth then we have the remainder term estimate:

$$s(\lambda ) = \frac{{Area(K)}}{{4\pi }}\lambda + o({\lambda ^{1/2}})as\lambda \to + \infty $$

. More generally, we prove that similar results hold for a large class of perturbations of elliptic operators at infinity which may be degenerate in a bounded set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon, Asymptotic formulas with remainder estimates of eigenvalues of elliptic operators, Arch. Rational Mech. Anal. 28 (1968), 165–183.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. S. Baouendi and C. Goulaouic, Régularité et théorie spectrale pour une classe d’opérateurs elliptiques dégénérés, Arch. Rational Mech. Anal. 34 (1969), 361–379.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. S. Birman and M. Z. Solomyak, Leading term in the asymptotic spectral formula for “nonsmooth”elliptic problems, Funct. Anal. Appl. 4 (1970), 265–275.

    Article  MATH  Google Scholar 

  4. P. Bolley, J. Camus and Pham The Lai, Noyau, résolvente et valeurs propres d’une classe d’opérateurs elliptiques et dégénérés, Springer Lecture Notes in Math. N° 660 “Equations aux dérivées partielle”, Proceedings, Saint Jean de Monts (1977).

    Google Scholar 

  5. V. S. Buslaev, On the asymptotic behaviour of the spectral characteristics of exterior problems for the Schrödinger operator, Math. USSR-Izv. 9 No 1 (1975), 139–223.

    Article  Google Scholar 

  6. M. S. Birman and M. G. Krein, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR 144 (1962), 475–478.

    MathSciNet  Google Scholar 

  7. E. B. Davies, Heat kernels and spectral theory, Cambridge University Press, 1989.

    Google Scholar 

  8. E. B. Davies, Long time asymptotics of fourth order parabolic equations, preprint 1994.

    Google Scholar 

  9. J. P. Eckmann and C. A. Pillet, Spectral Duality for Planar Billiards, Comm. Math. Phys. (1995).

    Google Scholar 

  10. I. C. Gohberg, M. G. Krein, Introduction à la théorie des opérateurs non autoadjoints, Dunod, 1972.

    Google Scholar 

  11. G. Grubb, Remarks on trace estimates for exterior boundary problems, Comm. in Partial Diff. Eq. 9 no 3 (1984), 231–270.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Helffer and D. Robert, Calcul fonctionnel par la transformée de Mellin et opérateurs admissibles, J. Funct. Anal. 53 no 3 (1983), 246–268.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Hörmander, The Analysis of Linear Partial Differential Operators I to IV, Springer Verlag, 1983–1985.

    Google Scholar 

  15. V. Ivrii, On the second term in the spectral asymptotics for the Laplace-Beltrami operator on a manifold with boundary, Funct. Anal. Appl. 14 (1980), 98–106.

    Article  MathSciNet  Google Scholar 

  16. A. Jensen and T. Kato, Asymptotic behaviour of the scattering phase for exterior domains, Comm. in Partial Diff. Eq. 3 no 12 (1978), 1165–1195.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Kac, Can we hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1–23.

    Article  MATH  Google Scholar 

  18. M. G. Krein, Perturbation determinants and a formula for the traces of unitary and self adjoint operators, Soviet Math. Dokl. 3 (1962), 707–710.

    Google Scholar 

  19. P. Lax and R. Phillips, Scattering theory, Academic Press, 1967.

    Google Scholar 

  20. A. Majda and J. Ralston, An analogue of Weyl’s formula for unbounded domains. I, Duke Math. J. 45 (1978), 183–196

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Majda and J. Ralston, An analogue of Weyl’s formula for unbounded domains. I, II, 45 (1978), 513–536

    MathSciNet  MATH  Google Scholar 

  22. A. Majda and J. Ralston, An analogue of Weyl’s formula for unbounded domains. I, III. An epilogue, 46 (1979), 725–731.

    MathSciNet  MATH  Google Scholar 

  23. R. Melrose, Weyl’s conjecture for manifolds with concave boundary, Proc. Symp. on Pure Math. A.M.S (1980), 257–273.

    Google Scholar 

  24. R. Melrose,, Weyl asymptotics for the phase in obstacle scattering, Comm. in Partial Diff. Eq. 13 no 11 (1988), 1431–1439.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Menikoff and J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235 (1978), 55–84.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Métivier, Valeurs propres de problèmes aux limites irréguliers, Bull. Soc. Math. France, mémoire 51–52 (1977), 125–219.

    Google Scholar 

  27. E. Mourre, Opérateurs conjugués et propriétés de propagation, Comm. Math. Phys. 91 (1981), 279–300.

    Article  MathSciNet  Google Scholar 

  28. C. Nordin, The asymptotic distribution of the eigenvalues of a degenerate elliptic operator, Ark. Mat. 10 (1972), 3–21.

    Article  MathSciNet  Google Scholar 

  29. Pham The Lai, Comportement asymptotique du noyau de la résolvente et des valeurs propres d’une classe d’opérateurs elliptiques dégénérés non necessairement auto-adjoint, J. Math. Pures Appl. 55 (1976), 1–42.

    Google Scholar 

  30. V. Petkov and G. Popov, Asymptotic behaviour of the scattering phase for non trapping obstacles, Ann. Inst. Fourier, Grenoble 32 no 3 (1982), 111–149.

    Article  MathSciNet  MATH  Google Scholar 

  31. V. Petkov and D. Robert, Asymptotique semiclassique du spectre d’hamiltoniens quantiques et trajectoires périodiques, Comm in Partial Diff. Eq. 10 (1985), 365–390.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Reed and B. Simon, Scattering theory, Academic Press, 1979.

    Google Scholar 

  33. D. Robert, Asymptotique à grande énergie de la phase de diffusion pour un potentied, Asymptotic Analysis 3 (1991), 301–320.

    MathSciNet  Google Scholar 

  34. D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du Laplacien, Ann. Ec. Norm. Sup 25 (1992), 107–134.

    MATH  Google Scholar 

  35. D. Robert, Relative time delay for perturbations of elliptic operators and semiclassical asymptotics, J. Funct. Anal. 126 no 1 (1994), 36–82.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Robert,, Sur la formule de Weyl pour des ouverts non bornés, C. R. Acad. Sci. Paris 319 Série I (1994), 29–34.

    Google Scholar 

  37. D. Robert,, A trace formula for obstacles problems and applications, Mathematical results in quantum mechanics (M. Demuth, P. Exner, H. Neidhardt and V. Zagrebnov, eds.), Birkhäuser Verlag, Basel, 1994, pp. 283–292, Operator Theory; Advances and applications Vol. 70.

    Google Scholar 

  38. D. Robert, Autour de l’Approximation Semi-Classique, Birkhäuser, Basel, Progress in Math. 68.

    Google Scholar 

  39. D. Robert and H. Tamura, Semiclassical asymptotics for local spectral densities and time delay problems in scattering process, J. Funct. Anal. 80 (1988), 124–147.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Robert and V. Sordoni, Trace formulas and Dirichlet-Neumann problems with variable boundary, Preprint, June 1995.

    Google Scholar 

  41. Yu. G. Safarov, Exact asymptotics of the spectrum of a boundary value problem and periodic billiards, Math. USSR-Izv. 33 no 3 (1989), 553–573.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3, Adv. Math. 29 (1978), 244–269.

    MathSciNet  MATH  Google Scholar 

  43. J. Sjóstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 no 4 (1991), 729–769.

    Article  MathSciNet  Google Scholar 

  44. U. Smilansky, Semiclassical quantization of chaotic billiards,In Chaos and quantum chaos (W. D. Heiss, ed.), Springer-Verlag, Berlin, Lecture Notes in Physics 411 (1993), 57–120.

    Google Scholar 

  45. D. G. Vassilev, Two-term asymptotics of the spectrum of a boundary value problem for inside reflection of a general type, Funct. Anal. Appl. 18 (1984), 1–13.

    MathSciNet  Google Scholar 

  46. D. G. Vassilev, Asymptotics of the spectrum of a boundary value problem, Trans. Moscow Math. Soc. (1987), 167–237.

    Google Scholar 

  47. D. Yafaev, Mathematical Scattering Theory. General Theory, Amer. Math. Soc., Rhode Island, 1992, Vol. 105.

    Google Scholar 

  48. H. Weyl, Das asymptotische Verteilungsgesetz der eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71 (1911), 441–469.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this paper

Cite this paper

Robert, D. (1996). On the Weyl Formula for Obstacles. In: Hörmander, L., Melin, A. (eds) Partial Differential Equations and Mathematical Physics. Progress in Nonlinear Differential Equations and Their Applications, vol 21. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0775-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0775-7_18

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6897-0

  • Online ISBN: 978-1-4612-0775-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics