Skip to main content
Book cover

The Cochlea pp 258–317Cite as

Mechanics of the Cochlea: Modeling Efforts

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 8))

Abstract

Compared to reality, models of the cochlea appear ridiculously simple. To many it may seem strange that a very crude model would tell us something essential about how the real organ works, or, what is more, would predict the outcome of experiments yet to be done. This chapter has been written with the desire to prove that modeling is a useful and enjoyable exercise. Unfortunately for many, this cannot be done without the use of mathematics. However, even for those who can follow and understand mathematical derivations, the field of cochlear modeling may seem confusing because it is too wide. The present chapter is intended to be a useful guide in both these respects.

Mercutio

True, I talk of dreams

Which are the children of an idle brain

Begot of nothing but vain fantasy

Which is as thin of substance as the air

And more inconstant than the wind, who wooes

Even now the frozen bosom of the north

And, being anger’d, puffs away from thence

Turning his face to the dew-dropping south

Shakespeare, Romeo and Juliet, I, 5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas PJ, Sachs MB (1976) Two-tone suppression in auditory-nerve fibers:extension of a stimulus-response relationship. J Acoust Soc Am 59:112–122.

    PubMed  CAS  Google Scholar 

  • Allen JB (1977) Two-dimensional cochlear fluid model: new results. J Acoust Soc Am 61:110–119.

    PubMed  CAS  Google Scholar 

  • Allen JB (1980) Cochlear micromechanics—a physical model of transduction. J Acoust Soc Am 68:1660–1670.

    PubMed  CAS  Google Scholar 

  • Allen JB (1990) Modeling the noise damaged cochlea. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. Berlin: Springer-Verlag, pp. 324–331.

    Google Scholar 

  • Allen JB, Fahey PF (1992) Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane. J Acoust Soc Am 92:178–188.

    PubMed  CAS  Google Scholar 

  • Allen JB, Neely ST (1992) Micromechanical models of the cochlea. Physics Today 45:40–47.

    Google Scholar 

  • Allen JB, Sondhi MM (1979) Cochlear macromechanics — time domain solutions. J Acoust Soc Am 66:123–132.

    PubMed  CAS  Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol (Lond) 388:323–347.

    CAS  Google Scholar 

  • Bialek W, Wit HP (1984) Quantum limits to oscillator stability: theory and experiments on acoustic emissions from the human ear. Phys Lett 104A:173–178.

    Google Scholar 

  • Brass D, Kemp DT (1993) Analysis of Mössbauer mechanical measurements indicate that the cochlea is mechanically active. J Acoust Soc Am 93:1502–1515.

    PubMed  CAS  Google Scholar 

  • Breed AJ, Kanis LJ, de Boer E (1992) Cochlear nonlinearity for complex stimuli. In: Cazals Y, Demany L, Homer K (eds) Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 189–195.

    Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    PubMed  CAS  Google Scholar 

  • Brundin L, Flock A, Canlon B (1989) Tuned motile responses of isolated cochlear hair cells. Acta Otolaryngol (Stockholm) Suppl 467:229–234.

    CAS  Google Scholar 

  • Brundin L, Flock A, Khanna SM, Ulfendahl M (1991) Frequency-specific position shift in the guinea pig organ of Corti. Neurosci Lett 128:77–80.

    PubMed  CAS  Google Scholar 

  • Cheatham MA, Dallos P (1989) Two-tone suppression in inner hair cell responses. Hear Res 40:187–196.

    PubMed  CAS  Google Scholar 

  • Cheatham MA, Dallos P (1990a) Two-tone interactions in inner hair cell potentials: AC versus DC effects. Hear Res 43:135–139.

    PubMed  CAS  Google Scholar 

  • Cheatham MA, Dallos P (1990b) Comparison of low-and high-side two-tone suppression in inner hair cell and organ of Corti responses. Hear Res 50:193–210.

    PubMed  CAS  Google Scholar 

  • Cody AR (1992) Acoustic lesions in the mammalian cochlea: implications for the spatial distribution of the. ‘active process.’ Hear Res 62:166–172.

    PubMed  CAS  Google Scholar 

  • Cooper NP, Rhode WS (1992) Basilar mechanics in the hook region of cat and guinea pig cochlea: sharp tuning and nonlinearity in the absence of baseline position shifts. Hear Res 63:163–190.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol (Lond) 364:359–379.

    CAS  Google Scholar 

  • Dallos P (1973) The Auditory Periphery. Biophysics and Physiology. New York: Academic Press.

    Google Scholar 

  • Dallos P, Cheatham MA (1971) Travel time in the cochlea and its determination from cochlear-microphonic data. J Acoust Soc Am 49:1140–1143.

    PubMed  Google Scholar 

  • Dallos P, Cheatham MA (1976) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512.

    PubMed  CAS  Google Scholar 

  • Dallos P, Harris PM, Relkin E, Cheatham MA (1980) Two-tone suppression and intermodulation distortion in the cochlea: effect of outer hair cell lesions. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: Delft University Press, pp. 242–252.

    Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    PubMed  CAS  Google Scholar 

  • de Boer E (1980a) Auditory physics. Physical principles in hearing theory. I. Phys Rep 62:87–174.

    Google Scholar 

  • de Boer E (1980b) A cylindrical cochlea model—the bridge between two and three dimensions. Hear Res 3:109–131.

    PubMed  Google Scholar 

  • de Boer E (1981) Short waves in three-dimensional cochlea models: solution for a ‘block’ model. Hear Res 4:53–77.

    PubMed  Google Scholar 

  • de Boer E (1983) No sharpening? A challenge for cochlear mechanics. J Acoust Soc Am 73:567–573.

    Google Scholar 

  • de Boer E (1984) Auditory physics. Physical principles in hearing theory. II. Phys Rep 105:141–226.

    Google Scholar 

  • de Boer E (1989) Outer hair cell motility and wave amplification in the inner ear. In: Pravica P, Draculic G (eds) Proc. 13th International Congress on Acoustics. Sabac, Yugoslavia: Dragen Press, pp. 499–502.

    Google Scholar 

  • de Boer E (1991) Auditory physics. Physical principles in hearing. III. Phys Rep 203:127–229.

    Google Scholar 

  • de Boer E (1993) The sulcus connection. On a mode of participation of outer hair cells in cochlear mechanics. J Acoust Soc Am 93:2845–2859.

    PubMed  Google Scholar 

  • de Boer E, van Bienema E (1982) Solving cochlear mechanics problems with higher-order differential equations. J Acoust Soc Am 72:1427–1434.

    PubMed  Google Scholar 

  • de Boer E, Kruidenier C (1990) On ringing limits of the auditory periphery. Biol Cybern 63:433–442.

    PubMed  Google Scholar 

  • de Boer E, Viergever MA (1982) Validity of the Liouville-Green (or WKB) method for cochlear mechanics. Hear Res 8:131–155.

    PubMed  Google Scholar 

  • de Boer E, Viergever MA (1984) Wave propagation and dispersion in the cochlea. Hear Res 13:101–112.

    PubMed  Google Scholar 

  • Diependaal RJ, Viergever MA (1983) Point-impedance characterization of the basilar membrane in a three-dimensional cochlea model. Hear Res 11:33–40.

    PubMed  CAS  Google Scholar 

  • Diependaal RJ, Viergever MA, de Boer E (1986) Are active elements necessary in the basilar membrane impedance? J Acoust Soc Am 80:124–132.

    PubMed  CAS  Google Scholar 

  • Diependaal RJ, Duifhuis H, Hoogstraten HW, Viergever MA (1987) Numerical methods for solving one-dimensional cochlear models in the time domain. J Acoust Soc Am 82:1655–1666.

    PubMed  CAS  Google Scholar 

  • Evans EF (1972) The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol (Lond) 226:263–287.

    CAS  Google Scholar 

  • Evans EF (1975) The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea. Audiology 14:419–442.

    PubMed  CAS  Google Scholar 

  • Fahey PF, Allen JB (1985) Nonlinear phenomena as observed in the ear canal and at the auditory nerve. J Acoust Soc Am 77:599–612.

    PubMed  CAS  Google Scholar 

  • Fletcher H (1951) On the dynamics of the cochlea. J Acoust Soc Am 23:637–645.

    Google Scholar 

  • Flock A, Strelioff D (1984) Studies on hair cells in isolated coils from the guinea pig cochlea. Hear Res 15:11–18.

    PubMed  CAS  Google Scholar 

  • Geisler CD (1986) A model of the effect of outer hair cell motility on cochlear vibrations. Hear Res 24:125–131.

    PubMed  CAS  Google Scholar 

  • Geisler CD (1991) A cochlear model using feedback from motile outer hair cells. Hear Res 54:105–117.

    PubMed  CAS  Google Scholar 

  • Geisler CD (1993) A realizable model of the effect of outer hair cell motility on cochlear vibrations. Hear Res 68:253–262.

    PubMed  CAS  Google Scholar 

  • Gitter AH, Zenner H-P (1988) Auditory transduction steps in single inner and outer hair cells. In: Duifhuis H, Horst JW, Wit HP (eds) Basic Issues in Hearing. London: Academic Press, pp. 32–39.

    Google Scholar 

  • Goldstein JL (1967) Auditory nonlinearity. J Acoust Soc Am 41:676–689.

    PubMed  CAS  Google Scholar 

  • Goldstein JL (1990) Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinear filtering. Hear Res 49:39–60.

    PubMed  CAS  Google Scholar 

  • Goldstein JL (1993) Exploring new principles of cochlear operation: bandpass filtering by the organ of Corti and additive amplification on the basilar membrane. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair-Cell Sensory Systems. Singapore: World Scientific, pp. 315–322.

    Google Scholar 

  • Goldstein JL, Kiang NY-S (1968) Neural correlates of the aural combination tone 2f1 - f2. Proc IEEE 56:981–992.

    Google Scholar 

  • Gummer AW, Johnstone BM, Armstrong NJ (1981) Direct measurements of basilar membrane stiffness in the guinea pig cochlea. J Acoust Soc Am 70:1298–1309.

    Google Scholar 

  • Hall JL (1974) Two-tone distortion products in a nonlinear model of the basilar membrane. J Acoust Soc Am 56:1818–1828.

    PubMed  CAS  Google Scholar 

  • Hall JL (1977a) Two-tone suppression in a nonlinear model of the basilar membrane. J Acoust Soc Am 61:802–810.

    PubMed  CAS  Google Scholar 

  • Hall JL (1977b) Spatial differentiation as an auditory “second filter”: assessment on a nonlinear model of the basilar membrane. J Acoust Soc Am 61:520–524.

    PubMed  CAS  Google Scholar 

  • Holley MC, Ashmore JF (1988) On the mechanism of a high-frequency force generator in outer hair cells isolated from the guinea pig cochlea. Proc R Soc Lond B 323:413–429.

    Google Scholar 

  • Houtgast T (1972) Psychophysical evidence for lateral inhibition in hearing. J Acoust Soc Am 51:1885–1894.

    PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199.

    PubMed  CAS  Google Scholar 

  • Hubbard AE (1993) A traveling wave-amplifier model of the cochlea. Science 259:68–71.

    PubMed  CAS  Google Scholar 

  • Hubbard AE, Geisler CD (1972) A hybrid-computer model of the cochlear partition. J Acoust Soc Am 51:1895–1903.

    PubMed  CAS  Google Scholar 

  • Iwasa KH, Chadwick RS (1992) Elasticity and active force generation of cochlear outer hair cells. J Acoust Soc Am 92:3169–3173.

    PubMed  CAS  Google Scholar 

  • Jones K, Tubis A, Long GR, Burns EM, Strickland EA (1986) Interactions among multiple spontaneous otoacoustic emissions. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Periperhal Auditory Mechanisms. Berlin: Springer-Verlag, pp. 266–273.

    Google Scholar 

  • Johnstone BM, Boyle AJF (1967) Basilar membrane vibration examined with the Mössbauer technique. Science 158:389–390.

    PubMed  CAS  Google Scholar 

  • Johnstone BM, Yates GK (1974) Basilar membrane tuning curves in the guinea pig. J Acoust Soc Am 55:584–587.

    PubMed  CAS  Google Scholar 

  • Johnstone BM, Taylor KJ, Boyle AJ (1970) Mechanics of the guinea pig cochlea. J Acoust Soc Am 47:504–509.

    PubMed  CAS  Google Scholar 

  • Kanis LJ, de Boer E (1993a) Self-suppression in a locally active nonlinear model of the cochlea: a quasi-linear approach. J Acoust Soc Am 94:3199–3206.

    PubMed  CAS  Google Scholar 

  • Kanis LJ, de Boer E (1993b) The emperor’s new clothes: DP emissions in a locally-active nonlinear model of the cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair-Cell Sensory Systems. Singapore: World Scientific, pp. 304–311.

    Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391.

    PubMed  CAS  Google Scholar 

  • Kemp DP (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45.

    PubMed  CAS  Google Scholar 

  • Kemp DT, Brown AM (1983) An integrated view of cochlear mechanical nonlinearities observable from the ear canal. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. Delft: Delft University Press, pp. 75–82.

    Google Scholar 

  • Khanna SM, Flock A, Ulfendahl M (1989) Comparison of the tuning of outer hair cells and the basilar membrane in the isolated cochlea. Acta Otolaryngol (Stockholm) Suppl 467:151–156.

    CAS  Google Scholar 

  • Kiang NY-S, Moxon EC (1974) Tails of tuning curves of auditory nerve fibers. J Acoust Soc Am 55:620–630.

    PubMed  CAS  Google Scholar 

  • Kim DO, Siegel JH, Molnar CE (1979) Cochlear mechanics: physiologically-vulnerable nonlinear behavior in two-tone responses. Scand Audiol Suppl 9:63–81.

    PubMed  Google Scholar 

  • Kim DO, Molnar CE, Matthews JW (1980) Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure. J Acoust Soc Am 67:1704–1721.

    PubMed  CAS  Google Scholar 

  • Kim DO, Neely ST, Molnar CE, Matthews JW (1980) An active cochlear model with negative damping in the partition: comparison with Rhode’s ante-and postmortem observations. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: Delft University Press, pp. 7–14.

    Google Scholar 

  • Kolston PJ (1988) Sharp mechanical tuning in a cochlear model without negative damping. J Acoust Soc Am 83:1481–1487.

    PubMed  CAS  Google Scholar 

  • Kolston PJ, de Boer E, Viergever MA, Smoorenburg GF (1990) What type of force does the cochlear amplifier produce? J Acoust Soc Am 88:1794–1801.

    PubMed  CAS  Google Scholar 

  • Koshigoe S, Tubis A (1982) Implications of causality, time-translation invariance, linearity, and minimum phase behavior for basilar membrane response functions. J Acoust Soc Am 71:1194–1200.

    PubMed  CAS  Google Scholar 

  • LePage EL (1987) Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea. J Acoust Soc Am 82:139–154.

    Google Scholar 

  • Lesser MB, Berkley DA (1972) Fluid mechanics of the cochlea. J Fluid Mech 51:497–512.

    Google Scholar 

  • Lighthill MJ (1981) Energy flow in the cochlea. J Fluid Mech 106:149–213.

    Google Scholar 

  • Lyon RF, Mead C (1988) An analog electronic cochlea. IEEE Trans ASSP 36:1119–1134.

    Google Scholar 

  • Mammano F, Ashmore JF (1993) Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature (Lond) 365:838–841.

    CAS  Google Scholar 

  • Mammano F, Nobili R (1993) Biophysics of the cochlea: linear approximation. J Acoust Soc Am 93:3320–3332.

    PubMed  CAS  Google Scholar 

  • Matthews JW (1983) Modeling reverse middle ear transmission of acoustic distortion signals. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. Delft: Delft University Press, pp. 11–18.

    Google Scholar 

  • Miller CE (1985a) VLFEM analysis of a two-dimensional cochlear model. J Appl Mech 52:1–9.

    Google Scholar 

  • Miller CE (1985b) Structural implications of basilar membrane compliance measurements. J Acoust Soc Am 77:1465–1474.

    PubMed  CAS  Google Scholar 

  • Mountain DC, Hubbard AE, McMullen TA (1983) Electromechanical processes in the cochlea. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. Delft: Delft University Press, pp. 119–126.

    Google Scholar 

  • Neely ST (1981) Finite difference solution of a two-dimensional mathematical model of the cochlea. J Acoust Soc Am 69:1386–1393.

    PubMed  CAS  Google Scholar 

  • Neely ST (1985) Mathematical modeling of cochlear mechanics. J Acoust Soc Am 78:345–352.

    PubMed  CAS  Google Scholar 

  • Neely ST (1993) A model of cochlear mechanics with outer hair cell motility. J Acoust Soc Am 94:137–146.

    PubMed  CAS  Google Scholar 

  • Neely ST, Kim DO (1986) A model for active elements in cochlear biomechanics. J Acoust Soc Am 79:1472–1480.

    PubMed  CAS  Google Scholar 

  • Novoselova SM (1987) A three-chamber model of the cochlea. J Soviet Math 38:1655–1663.

    Google Scholar 

  • Novoselova SM (1989) A possibility of sharp tuning in a linear transversally inhomogeneous cochlear model. Hear Res 41:125–136.

    PubMed  CAS  Google Scholar 

  • Novoselova SM (1993) An alternative mechanism of sharp cochlear tuning. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair-Cell Sensory Systems. Singapore: World Scientific, pp. 338–344.

    Google Scholar 

  • Nuttall AL, Dolan DF (1993) Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig. J Acoust Soc Am 93:390–400.

    PubMed  CAS  Google Scholar 

  • Nuttall AL, Dolan DF, Avinash G (1990) Measurements of basilar membrane tuning and distortion with laser doppler velocimetry. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. Berlin: Springer-Verlag, pp. 288–295.

    Google Scholar 

  • Nuttall AL, Dolan DF, Avinash G (1991) Laser doppler velocimetry of basilar membrane vibration. Hear Res 51:203–214.

    PubMed  CAS  Google Scholar 

  • Olson ES, Mountain DC (1991) In vivo measurement of basilar membrane stiffness. J Acoust Soc Am 89:1262–1275.

    PubMed  CAS  Google Scholar 

  • Patuzzi RB, Sellick PM, Johnstone BM (1984a) The modulation of the sensitivity of the mammalian cochlea by low frequency tones. I: Primary afferent activity. Hear Res 13:1–8.

    PubMed  CAS  Google Scholar 

  • Patuzzi RB, Sellick PM, Johnstone BM (1984b) The modulation of the sensitivity of the mammalian cochlea by low frequency tones. III Basilar membrane motion. Hear Res 13:19–27.

    PubMed  CAS  Google Scholar 

  • Patuzzi RB, Yates GK, Johnstone BM (1989a) The origin of the low-frequency microphonic in the first cochlear turn of guinea pig. Hear Res 39:177–188.

    PubMed  CAS  Google Scholar 

  • Patuzzi RB, Yates GK, Johnstone BM (1989b) Outer hair cell receptor current and sensorineural hearing loss. Hear Res 42:47–72.

    PubMed  CAS  Google Scholar 

  • Prijs VF (1989) Lower boundaries of two-tone suppression regions in the guinea pig. Hear Res 24:73–82.

    Google Scholar 

  • Puria S, Allen JB (1991) A parametric study of cochlear input impedance. J Acoust Soc Am 89:287–309.

    PubMed  CAS  Google Scholar 

  • Reuter G, Gitter AH, Thurm U, Zenner H-P (1992) High frequency radial movements of the reticular lamina induced by outer hair cell motility. Hear Res 60:236–246.

    PubMed  CAS  Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231.

    PubMed  Google Scholar 

  • Rhode WS (1978) Some observations on cochlear mechanics. J Acoust Soc Am 64:158–176.

    PubMed  CAS  Google Scholar 

  • Robertson D (1976) Correspondence between sharp tuning and two-tone inhibition in primary auditory neurones. Nature (Lond) 259:477–478.

    CAS  Google Scholar 

  • Robles L, Ruggero MA, Rich N (1986a) Mössbauer measurements of the mechanical response to single-tone and two-tone stimuli at the base of the chinchilla cochlea. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubin A (eds) Peripheral Auditory Mechanisms. Berlin: Springer-Verlag, pp. 121–127.

    Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1986b) Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. J Acoust Soc Am 80:1364–1374.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Robles L, Rich NC (1992) Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J Neurophysiol 68:1087–1099.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Robles L, Rich NC, Recio A (1992) Basilar membrane responses to two-tone and broadband stimuli. Phil Trans R Soc Lond B 336:307–315.

    CAS  Google Scholar 

  • Russell IJ, Sellick PM (1977) Tuning properties of cochlear hair cells. Nature (Lond) 267:858–860.

    CAS  Google Scholar 

  • Russell IJ, Sellick PM (1978) Intracellular studies in the mammalian cochlea. J Physiol (Lond) 284:261–290.

    CAS  Google Scholar 

  • Sachs MB (1969) Stimulus-response relation for auditory-nerve fibers: two-tone stimuli. J Acoust Soc Am 45:1025–1036.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Abbas PJ (1976) Phenomenological model for two-tone suppression. J Acoust Soc Am 60:1157–1163.

    Google Scholar 

  • Sachs MB, Kiang NY-S (1968) Two-tone inhibition in auditory-nerve fibers. J Acoust Soc Am 43:1120–1128.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Young ED (1980) Effects of nonlinearities on speech encoding in the auditory nerve. J Acoust Soc Am 68:858–875.

    PubMed  CAS  Google Scholar 

  • Schmiedt RA (1982) Boundaries of two-tone rate suppression of cochlear-nerve activity. Hear Res 7:335–351.

    PubMed  CAS  Google Scholar 

  • Schmiedt RA, Zwislocki JJ, Hamernik RP (1980) Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal-wave patterns. J Neurophysiol 43:1367–1389.

    PubMed  CAS  Google Scholar 

  • Schroeder MR (1973) An integrable model for the basilar membrane. J Acoust Soc Am 53:429–434.

    PubMed  CAS  Google Scholar 

  • Sellick PM, Russell IJ (1979) Two-tone suppression in cochlear hair cells. Hear Res 1:227–236.

    Google Scholar 

  • Sellick PM, Patuzzi RB, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72:131–141.

    PubMed  CAS  Google Scholar 

  • Sellick PM, Yates GK, Patuzzi R (1983) The influence of Mössbauer source size and position on phase and amplitude measurements of the guinea pig basilar membrane. Hear Res 10:101–108.

    PubMed  CAS  Google Scholar 

  • Shera CA, Zweig G (1991a). A symmetry suppresses the cochlear catastrophe. J Acoust Soc Am 89:1276–1289.

    PubMed  CAS  Google Scholar 

  • Shera CA, Zweig G (1991b) Reflection of retrograde waves within the cochlea and at the stapes. J Acoust Soc Am 89:1290–1305.

    PubMed  CAS  Google Scholar 

  • Siebert WM (1974) Ranke revisited - a simple short-wave cochlear model. J Acoust Soc Am 56:594–600.

    PubMed  CAS  Google Scholar 

  • Smoorenburg GF (1972a) Audibility region of combination tones. J Acoust Soc Am 52:603–614.

    Google Scholar 

  • Smoorenburg GF (1972b) Combination tones and their origin. J Acoust Soc Am 52:615–632.

    Google Scholar 

  • Smoorenburg GF (1980) Effects of temporary threshold shift on combination-tone generation and on two-tone suppression. Hear Res 2:347–355.

    PubMed  CAS  Google Scholar 

  • Sondhi MM (1978) Method for computing motion in a two-dimensional cochlear model. J Acoust Soc Am 63:1468–1477.

    PubMed  CAS  Google Scholar 

  • Steele CR, Taber LA (1979a) Comparison of WKB and finite difference calculations for a two-dimensional cochlear model. J Acoust Soc Am 65:1001–1006.

    PubMed  CAS  Google Scholar 

  • Steele CR, Taber LA (1979b) Comparison of WKB calculations and experimental results for a three-dimensional cochlear model. J Acoust Soc Am 65:1007–1018.

    PubMed  CAS  Google Scholar 

  • Steele CR, Taber LA (1981) Three-dimensional model calculations for guinea pig cochlea. J Acoust Soc Am 69:1107–1111.

    PubMed  CAS  Google Scholar 

  • Steele CR, Baker G, Tolomeo J, Zetes D (1993) Electro-mechanical models of the outer hair cell. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair-Cell Sensory Systems. Singapore: World Scientific, pp. 207–214.

    Google Scholar 

  • Taber LA, Steele CR (1981) Cochlear model including three-dimensional fluid and four modes of partition flexibility. J Acoust Soc Am 70:426–436.

    PubMed  CAS  Google Scholar 

  • van Dijk P (1990) Characteristics and Mechanisms of Spontaneous Otoacoustic Emissions. Thesis, University of Groningen, the Netherlands.

    Google Scholar 

  • van Dijk P, Wit HP (1990) Synchronization of spontaneous otoacoustic emissions to a 2f1 - f2 distortion product. J Acoust Soc Am 88:850–856.

    PubMed  Google Scholar 

  • van Netten SM, Khanna SM (1993) Mechanical demodulation of hydrodynamic stimuli performed by the lateral line organ. Prog Brain Res 97:45–51.

    PubMed  Google Scholar 

  • Viergever MA (1980) Mechanics of the Inner Ear-A Mathematical Approach. Thesis, Technical University of Delft, Delft University Press.

    Google Scholar 

  • Viergever MA (1986) Cochlear macromechanics-a review. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. Berlin: Springer-Verlag, pp. 63–72.

    Google Scholar 

  • Viergever MA, Diependaal RJ (1986) Quantitative validation of cochlear models using the Liouville-Green approximation. Hear Res 21:1–15.

    PubMed  CAS  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Weiss TF (1982) Bidirectional transduction in vertebrate hair cells: a mechanism for coupling mechanical and electrical vibrations. Hear Res 7:353–360.

    PubMed  CAS  Google Scholar 

  • Zenner H-P, Zimmermann U, Schmitt U (1985) Reversible contraction of isolated cochlear hair cells. Hear Res 18:127–133.

    PubMed  CAS  Google Scholar 

  • Zenner HP, Gitter AH, Rudert M, Ernst A (1992) Stiffness, compliance, elasticity and force generation of outer hair cells. Acta Otolaryngol (Stockholm) 112:248–253.

    CAS  Google Scholar 

  • Zweig G (1990) The impedance of the organ of Corti. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. Berlin: Springer-Verlag, pp. 362–369.

    Google Scholar 

  • Zweig G (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89:1229–1254.

    PubMed  CAS  Google Scholar 

  • Zweig G, Lipes R, Pierce JR (1976) The cochlear compromise. J Acoust Soc Am 59:975–982.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1955) Der ungewöhnliche Amplitudengang der nichtlinearen Verzerrungen des Ohres. Acustica 5:67–74.

    Google Scholar 

  • Zwicker E (1986a) A hardware cochlear nonlinear preprocessing model with active feedback. J Acoust Soc Am 80:146–153.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1986b) “Otoacoustic” emissions in a nonlinear cochlear hardware model with feedback. J Acoust Soc Am 80:154–162.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1986c) Suppression and (2f1 - f2)-difference tones in a nonlinear cochlear preprocessing model with active feedback. J Acoust Soc Am 80:163–176.

    PubMed  CAS  Google Scholar 

  • Zwislocki J (1948) Theorie der Schneckenmechanik: Qualitative and quantitative Analyse. Acta Otolaryngol Suppl 72.

    Google Scholar 

  • Zwislocki JJ, Kletsky EJ (1979) Tectorial membrane: a possible effect on frequency analysis in the cochlea. Science 204:639–641.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Boer, E. (1996). Mechanics of the Cochlea: Modeling Efforts. In: Dallos, P., Popper, A.N., Fay, R.R. (eds) The Cochlea. Springer Handbook of Auditory Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0757-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0757-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6891-8

  • Online ISBN: 978-1-4612-0757-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics