Exponential Decay of Eigenfunctions

  • P. D. Hislop
  • I. M. Sigal
Part of the Applied Mathematical Sciences book series (AMS, volume 113)


We take a pause from our development of the theory of linear operators to present a first application to Schrödinger operators. Let us recall from the Introduction that a Schrödinger operator is a linear operator on the Hilbert space L 2 (ℝn) of the form H = -△ + V, where and the potential V is a real-valued function. The general problem we study here is as follows. Suppose that L is a linear operator on L 2(ℝn) with eigenvalue λ and corresponding eigenfunction ψ, that is, a function ψ ∈ L 2(ℝn) such that Lψ= λψ Since ψ ∈ L 2(ℝn), it has some average decay as. How is this decay determined by the operator L? In the case that L is a Schrödinger operator, we would like to know how the behavior of the potential V, as determines the decay of an eigenfunction. This can be answered very nicely provided we content ourselves with upper bounds on the rate of decay. We will also use this discussion to introduce various geometric ideas concerning Schrödinger operators. These ideas will play important roles in the later chapters on semiclassical analysis.


Potential Versus SchrOdinger Equation Geometric Idea Discrete Eigenvalue Average Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • P. D. Hislop
    • 1
  • I. M. Sigal
    • 2
  1. 1.Department of MathematicsUniversity of Kentucky LexingtonUSA
  2. 2.Department of MathematicsUniversity of TorontoTorontoUSA

Personalised recommendations