Skip to main content

Identities of Exponential Functions

  • Chapter
Entire and Meromorphic Functions

Part of the book series: Universitext ((UTX))

  • 710 Accesses

Abstract

In this chapter, which is based on [13], we take up some questions prompted by mathematical logic, notably Tarski’s “High School Algebra Problem.” We study identities between certain functions of many variables that are constructed by using the elementary functions of addition x + y, multiplication xy, and one-place exponentiation ex, starting out with all the complex constants and the independent variables z 1,…, z n. We show that every true identity in this class follows from the natural set of 11 axioms of High School Algebra. The major tool in our proofs is the Nevanlinna theory of entire functions of n complex variables, of which we give a brief sketch. It is entirely parallel to the one-variable theory presented in detail earlier in this book. The timid reader can take n = 1, at least for a first reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostol, T., Mathematical Analysis, second edition, Addison-Wesley, Reading, MA, 19

    MATH  Google Scholar 

  2. Beck, W., Efficient quotient representations quotient representations of meromorphic functions in the disk, Ph.D. Thesis, University of Illinois, Urbana, IL, 1970.

    Google Scholar 

  3. 3. Becker J., Henson C. W., and Rubel, L. A., Annals of Math. First-order conformal invariants, 112 (1980), 123–178.

    Google Scholar 

  4. Berenstein C., Chang, D.-C, and Li, B. Q., Complex Variables A note on Wronskians and linear dependence of entire functions in Cn, 24 (1993), 131–144.

    MathSciNet  Google Scholar 

  5. Boas, Entire Functions, Academic Press, New York, 195

    MATH  Google Scholar 

  6. Bucholtz, J. D. and Shaw, J. K., Trans. AMS Zeros of partial sums and remainders of power series, 166 (1972), 269–184.

    Google Scholar 

  7. Buck, R. C., Duke Math J. Integral valued entire functions, 15 (1948), 879–891.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dienes, The Taylor Series, Dover, 1957.

    Google Scholar 

  9. Edrei A., and Fuchs, W. H. J, Trans. Amer. Math. Soc. Meromorphic functions with several deficient values, 93 (1959), 292–328.

    MathSciNet  MATH  Google Scholar 

  10. Gauthier P. M., and Hengartner, W., Annals of Math. The value distribution of most functions of one or several complex variables, 96(2) (1972), 31–52.

    MathSciNet  Google Scholar 

  11. Gurevic, R. H., Trans. Amer. Math. Soc. Detecting Algebraic (In)Dependence of Explicitly Presented Functions (Some Applications of Nevanlinna Theory to Mathematical Logic), 336(1) (1993), 1–67.

    MathSciNet  MATH  Google Scholar 

  12. Hayman, W. K., Meromorphic functions, Oxford, at the Clarendon Press, 1964 (Oxford Mathematical Monographs).

    Google Scholar 

  13. Henson C. W., and Rubel, L. A., Trans. Amer. Math. Soc. Some applications of Nevanlinna theory to mathematical logic: identities of exponential functions, 282(1) (1984), 1–32 (and Correction 294 (1) (1986), 381).

    MathSciNet  MATH  Google Scholar 

  14. Hille, E., Ordinary Differential Equations in the Complex Domain, John Wiley and Sons, New York, 1976.

    MATH  Google Scholar 

  15. Hiromi G., and Ozawa, M., Kōdai Math. Sem. Report, On the existence of analytic mappings between two ultrahyperelliptic surfaces, 17 (1965), 281–306.

    MathSciNet  MATH  Google Scholar 

  16. Kujala, R. O., Bull Amer. Math. Soc. Functions of finite λ-type in several complex variables, 75 (1969), 104–107.

    MathSciNet  MATH  Google Scholar 

  17. Kujala, R. O., Trans. Amer. Math. Soc. Functions of finite λ-type in several complex variables, 161 (1971), 327–258.

    MathSciNet  MATH  Google Scholar 

  18. Laine, I., Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, 1993.

    Google Scholar 

  19. Lang S., and Cherry, W., Topics in Nevanlinna Theory, Lecture Notes in Math. 1443, Springer-Verlag, New York, 1980.

    Google Scholar 

  20. Lindelöf, E., Ann. Scient. Éc. Norm. Sup. Functions entières d’ordre entier, 41 (1905), 369–395.

    Google Scholar 

  21. Mahler, K., Lectures on Transcendental Numbers, Lectures Notes in Math. 356, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  22. Malliavin P., and Rubel, L. A., Bull. Soc. Math. France On small entire functions of exponential type with given zeros, 89 (1961), 175–206.

    MathSciNet  MATH  Google Scholar 

  23. Markuševič, A. I., Entire Functions, American Elsevier Publishing Company, New York, 1966.

    Google Scholar 

  24. Miles, J., J. Analyse Math. Quotient Representations of Meromorphic Functions, 25 (1972), 371–388.

    Article  MathSciNet  MATH  Google Scholar 

  25. Miles, J., Bull. Amer. Math. Soc. Representing a meromorphic function as the quotient of two entire functions of small characteristic, 71 (1970), 1308–1309.

    MathSciNet  Google Scholar 

  26. Nevanlinna, R., Le Théorème de Picard-Borel lemma et la Théorie des Fonctions Méromorphes, second edition, Chelsea Publishing Company, New York, 1974.

    Google Scholar 

  27. Nienhuys J. W., and Thieman, J. G. F., Proc. Dutch Academy of Science, Ser. A. On the existence of entire functions mapping countable dense sets on each other, 79 (1976), 331–334.

    MATH  Google Scholar 

  28. Okada, Y., Science Rep. of the Tôhoku Imperial University Note on Power Series, 11 (1922), 43–50.

    MATH  Google Scholar 

  29. Painlevé, P., Leçons sur la Théorie Analytique des Equations Différ-entielles, Profesées à Stockholm, Hermann, Paris, 189

    Google Scholar 

  30. Palais, R. S., Amer. J. Math. Some analogues of Hartogs’ theorem in an algebraic setting, 10 (1978), 387–405.

    MathSciNet  Google Scholar 

  31. Pólya, G., Math. Zeitschrift Untersuchungen über Lücken und Singu-laritäten von Potenzreihen, 29 (1929), 549–640.

    MATH  Google Scholar 

  32. Reinhart, G., Schanuel Functions and Algebraic Differential Equations, Ph.D. Thesis, University of Illinois, Urbana, IL, 1993.

    Google Scholar 

  33. Robinson, R., Trans. Amer. Math. Soc. Undecidable rings, 70 (1951), 137–159.

    MATH  Google Scholar 

  34. Rogers, H., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 196

    MATH  Google Scholar 

  35. Rubel, L. A., Duke Math. J., A Fourier series method for entire functions, 30 (1963), 437–442.

    Article  MathSciNet  MATH  Google Scholar 

  36. Rubel L. A., and Taylor, B. A., Bull. Soc. Math. France A Fourier series method for meromorphic and entire functions, 96 (1968), 53–96.

    MATH  Google Scholar 

  37. Rubel L. A., and Yang, C. C., Values shared by an entire function and its derivative, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1977, pp. 101–103; in Complex Analysis Conference in Lexington, Kentucky, 1976.

    Google Scholar 

  38. Rudin, W., Real and Complex Analysis, McGraw-Hill, New York, 1974.

    MATH  Google Scholar 

  39. Schonfield, J. R., Mathematical Logic, Addison-Wesley, Reading, MA, 1967.

    Google Scholar 

  40. Sodin, M., Ad. Soviet Math. Value Distribution of Sequences of Rational Functions, 11 (1992).

    Google Scholar 

  41. Stoll, W., Proc. Sympos. Pure Math. About entire and meromorphic functions of exponential type, 11 (1968), Amer. Math. Soc, Providence, RI, 392–430.

    MathSciNet  Google Scholar 

  42. Stoll, W., Internat. J. Math. Sci. Value distribution and the lemma of the logarithmic derivative in polydisks, (vn 4) (1983), 617–669.

    Google Scholar 

  43. Taylor, B. A., Duality and entire functions, Thesis, University of Illinois, 1965.

    Google Scholar 

  44. Taylor, B. A., Proc. Sympos. Pure Math. The fields of quotients of some rings of entire functions, 11 (1968), Amer. Math. Soc., Providence, RI, 468–474.

    Google Scholar 

  45. Tsuji, M., Japanese J. Math. On the distribution of zero points of sections of a power series, 1 (1924), 109–140.

    Google Scholar 

  46. Tsuji, M., Japanese J. Math. On the distribution of zero points of sections of a power series III, 1 (1926), 49–52.

    Google Scholar 

  47. van den Dries, L., Pacific J. Math. Exponential rings, exponential polynomials, and exponential functions, 113(1) (1984), 51–

    MATH  Google Scholar 

  48. Vitter, A., Duke Math. J. The lemma of the logarithmic derivative in several complex variables, 44 (1977), 89–104.

    Article  MathSciNet  MATH  Google Scholar 

  49. Wilkie, A., On exponentiationa solution to Tarski’s High School Algebra Problem, preprint, ca. 1982, but never published.

    Google Scholar 

  50. Wilkie A., private communication.

    Google Scholar 

  51. Zygmund, A., Trigonometrical Series, 2nd. Ed., Cambridge, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rubel, L.A., Colliander, J.E. (1996). Identities of Exponential Functions. In: Entire and Meromorphic Functions. Universitext. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0735-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0735-1_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94510-1

  • Online ISBN: 978-1-4612-0735-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics