Advertisement

Interactions between Periphyton, Nonmolluscan Invertebrates, and Fish in Standing Freshwaters

  • John I. Jones
  • Brian Moss
  • Johnstone O. Young
Part of the Ecological Studies book series (ECOLSTUD, volume 131)

Abstract

Densities of several hundreds of micrograms of algal chlorophyll a per square meter are not unusual on submerged plant surfaces. Frequently, the supporting surface cannot be seen through the covering mass, which may compete with the plant for light, inorganic carbon, and nutrients. Given the problems posed by the overlying water column as well as the periphyton (syn: epiphyton) for such plants, it is remarkable that submerged plants develop at all in other than the clearest, most nutrient-deficient waters.

Keywords

White Dwarf Submerged Plant 22Ne Content Abundance Gradient White Dwarf Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloi, J.E. Changes in periphyton biomass, primary productivity and community composition resulting from field manipulations of crayfish. Bull. North Am. Benth. Soc. 5: 103; 1988.Google Scholar
  2. Aloi, J.E. A critical review of recent freshwater periphyton field methods. Can. J. Fish. Aquat. Sei. 47:656–670; 1990.CrossRefGoogle Scholar
  3. Batzer, D.P.; Resh, V.H. Trophic interactions among a beetle predator, a chironomid grazer, and periphyton in a seasonal wetland. Oikos 60: 251–257; 1991.CrossRefGoogle Scholar
  4. Bergey, E.A. Local effects of a sedentary grazer on stream algae. Freshwat. Biol. 33: 401–409; 1995.CrossRefGoogle Scholar
  5. Botts, P.S. The impact of small chironomid grazers on epiphytic algal abundance and dispersion. Freshwat. Biol. 30: 25–33; 1993.CrossRefGoogle Scholar
  6. Botts, P.S.; Cowell, B.C. Feeding electivity of two epiphytic chironomids in a subtropical lake. Oecologia 89: 331–337; 1992.Google Scholar
  7. Botts, P.S.; Cowell, B.C. Temporal patterns of abundance of epiphytic invertebrates on Typha shoots in a subtropical lake. J. North Am. Benth. Soc. 12: 27–39; 1993.CrossRefGoogle Scholar
  8. Bowker, D.W.; Warehorn, M.T.; Learner, M.A. The selection and ingestion of epilithic algae by Nais elinguis (Oligochaeta: Naididae). Hydrobiologia 98: 171–178; 1983.CrossRefGoogle Scholar
  9. Brock, T.C.M.; Roijackers, R.M.M.; Rollon, R.; Bransen, F.; Van der Heyden, L. Effects of nutrient loading and insecticide application on the ecology of Elodea-dominated freshwater microcosms. II. Responses of macrophytes, periphyton and macroinvertebrate grazers. Arch. Hydrobiol. 134: 53–74; 1995.Google Scholar
  10. Brönmark, C. Effects of tench and perch on interactions in a freshwater, benthic food chain. Ecology 75: 1818–1828; 1994.CrossRefGoogle Scholar
  11. Brönmark, C; Rundle, S.D.; Earlandsson, A. Interactions between freshwater snails and tadpoles: competition and facilitation. Oecologia 87: 8–18; 1991.CrossRefGoogle Scholar
  12. Brown, D.S. The ingestion and digestion of Cloëon dipterum L. Hydrobiologia 16: 81–96; 1960.CrossRefGoogle Scholar
  13. Cattaneo, A. Grazing on epiphytes. Limnol. Oceanogr. 28: 124–132; 1983.CrossRefGoogle Scholar
  14. Cattaneo, A., The effect of fetch on periphyton variation. Hydrobiologia 206: 1–10; 1990.CrossRefGoogle Scholar
  15. Cattaneo, A.; Kalff, J. The effect of grazer site manipulation on periphyton communities. Oecologia 69: 612–617; 1986.CrossRefGoogle Scholar
  16. Cattaneo, A.; Mousseau, B. Empirical analysis of the removal rate of periphyton by grazers. Oecologia 103: 249–254; 1995.CrossRefGoogle Scholar
  17. Creed, R.P. The influence of crayfish grazing on benthic community structure in a Michigan stream. Bull. North Am. Benth. Soc. 5: 67; 1988.Google Scholar
  18. Cuker, B.E. Competition and coexistence among the grazing snail Lymnaea, Chironomidae, and Microcrustacea in an arctic epilithic lacustrine community. Ecology 64: 10–15; 1983.CrossRefGoogle Scholar
  19. Dickman, M. The effect of grazing by tadpoles on the structure of a periphyton community. Ecology 49: 1188–1190; 1968.CrossRefGoogle Scholar
  20. Dodds, W.K. Community interactions between the filamentous alga Cladophora glomerata (L.) Kuetzing, its epiphytes, and epiphyte grazers. Oecologia 85: 572–580; 1991.CrossRefGoogle Scholar
  21. Dudley, T. Beneficial effects of grazers on algal growth. Bull. North Am. Benth. Soc. 3: 87; 1986.Google Scholar
  22. Dudley, T.L.; Cooper, S.D.; Hemphill, N. Effects of macroalgae in a stream invertebrate community. J. North Am. Benth. Soc. 3: 93–106; 1986.CrossRefGoogle Scholar
  23. Eichenberger, E.; Schlatter, F. The effect of herbivorous insects on the production of benthic algal vegetation in outdoor channels. Verh. Int. Verein. Limnol. 20: 1806–1810; 1978.Google Scholar
  24. Fairchild, G.W. Movement and distribution of Sida crystallina and other littoral micro-crustacea. Ecology 62: 1341–1352; 1981.CrossRefGoogle Scholar
  25. Fairchild, G.W.; Lowe, R.L. Artificial substrates that release nutrients: effects on periphyton and invertebrate succession. Hydrobiologia 114: 29–37; 1984.CrossRefGoogle Scholar
  26. Fairchild, G.W.; Campbell, J.M.; Lowe, R.L. Numerical response of Chydorids (Cladocera) and Chironomids (Diptera) to nutrient-enhanced periphyton growth. Arch. Hydrobiol. 114: 369–382; 1989a.Google Scholar
  27. Fairchild, G.W.; Sherman, J.W.; Acker, F.W. Effects of nutrient (N,P,C) enrichment, grazing and depth upon littoral periphyton of a softwater lake. Hydrobiologia 173: 69–83; 1989b.CrossRefGoogle Scholar
  28. Feminella, J.W.; Hawkins, C.P. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. J. North Am. Benth. Soc. 14: 465–509; 1995.CrossRefGoogle Scholar
  29. Feminella, J.W.; Resh, V.H. Herbivorous caddisflies, macroalgae, and epilithic microalgae: dynamic interactions in a stream grazing system. Oecologia 87: 247–256; 1991.CrossRefGoogle Scholar
  30. Flint, R.W.; Goldman, C.R. The effects of a benthic grazer on the primary productivity of the littoral zone of Lake Tahoe. Limnol. Oceanogr. 20: 935–944; 1975.CrossRefGoogle Scholar
  31. Forsberg, C; Kleiven, S.; Willen, T. Absence of allelopathic effects of Cham on phyto-plankton in situ. Aquat. Bot. 38: 289–294; 1990.CrossRefGoogle Scholar
  32. France, R.L.; Howell, E.T.; Paterson, M.J.; Welbourn, P.M. Relationship between littoral grazers and metaphytic algae in five softwater lakes. Hydrobiologia 220: 9–27; 1991.CrossRefGoogle Scholar
  33. Fryer, G. The feeding mechanism of some freshwater cyclopoid copepods. Proc. Zool. Soc. Lond. 129: 1–25; 1957.Google Scholar
  34. Fryer, G. Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Philos. Trans. R. Soc. Lond. B 254: 221–385; 1968.CrossRefGoogle Scholar
  35. Fryer, G. Evolution and adaptive radiation in the Macrothricidae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Philos. Trans. R. Soc. Lond. B 269: 237–274; 1974.CrossRefGoogle Scholar
  36. Fulton, R.S. III. Grazing on filamentous algae by herbivorous Zooplankton. Freshwat. Biol. 20: 263–271; 1988.CrossRefGoogle Scholar
  37. Garland, J.L.; Buikema, A.L. Effects of meiofaunal grazing on detrital and epiphytic assemblages. Bull. North Am. Benth. Soc. 3: 86; 1986.Google Scholar
  38. Garner, P.; Bass, J.A.B.; Collett, G.D. The effect of weed cutting upon the biota of a large regulated river. Aquatic conservation: marine and freshwater ecosystems. 6: 21–29; 1995.CrossRefGoogle Scholar
  39. Garner, P. Microhabitat use and diet of 0+ cyprinid fishes in a lentic regulated reach of the River Great Ouse. J. Fish Biol. 48: 367–382; 1996a.CrossRefGoogle Scholar
  40. Garner, P. Diel patterns in the feeding and habitat use of 0-group fishes in a regulated river the River Great Ouse, England. Ecol. Freshwat. Fish. 5: 175–182; 1996b.CrossRefGoogle Scholar
  41. Gelwick, F.P.; Matthews, W.J. Effects of an algivorous minnow on temperate stream ecosystem properties. Ecology 72: 1630–1645, 1992.CrossRefGoogle Scholar
  42. Gregory, S.V. Plant-herbivore interactions in stream systems. In: Barnes, J.R.; Minshall, G.W., eds. Stream ecology. New York: Plenum Press; 1983: 155–187.Google Scholar
  43. Gressens, S.E. Grazer density, competition and the response of the periphyton community. Oikos 73: 336–346; 1995.CrossRefGoogle Scholar
  44. Gressens, S.E.; Lowe, R.L. Periphyton patch preference in grazing chironomid larvae. J. North Am. Benth. Soc. 13: 89–99; 1994.CrossRefGoogle Scholar
  45. Hann, B.J. Invertebrate grazer-periphyton interactions in a eutrophic marsh pond. Freshwat. Biol. 26: 87–96; 1991.CrossRefGoogle Scholar
  46. Hart, D.D. Foraging and resource patchiness: field experiments with a grazing stream insect. Oikos 37: 46–52; 1981.CrossRefGoogle Scholar
  47. Hart, D.D. Grazing insects mediate algal interactions in a stream benthic community. Oikos 44: 40–46; 1985.CrossRefGoogle Scholar
  48. Irvine, K.; Moss, B.; Bales, M.; Snook, D. The changing ecosystem of a shallow, brackish lake, Hickling Broad, Norfolk, U.K. I. Trophic relationships with special reference to the role of Neomysis integer. Freshwat. Biol. 29: 119–139; 1993.CrossRefGoogle Scholar
  49. Jacoby, J.M. Grazing effects on periphyton by Theodoxus fluviatilis (Gastropoda) in a lowland stream. J. Freshwat. Fxol. 3: 265–274; 1985.CrossRefGoogle Scholar
  50. Jacoby, J.M. Alterations in periphyton characteristics due to grazing in a Cascade foothill stream. Freshwat. Biol. 18: 495–508; 1987.CrossRefGoogle Scholar
  51. Kairesalo, T. The seasonal succession of epiphytic communities within anEquisetum fluviatile L. stand in Lake Paajarvi, Southern Finland. Internationale Rev. Ges. Hydro-biol. 69: 475–505; 1984.CrossRefGoogle Scholar
  52. Kairesalo, T.; Koskimies, I. Grazing by oligochaetes and snails on epiphytes. Freshwat. Biol. 17: 317–324; 1987.CrossRefGoogle Scholar
  53. Kajak, Z. The effect of experimentaly induced variations in the abundance of Tendipes plumosus L. larvae on intraspecific and interspecific relations. Ekol. Pol. 11: 355–367; 1963.Google Scholar
  54. Karouna, N.K.; Fuller, R.L. Influence of four grazers on periphyton communities associated with clay tiles and leaves. Hydrobiologia 245: 53–64; 1992.CrossRefGoogle Scholar
  55. Kessler, D.H. Grazing rate determination of Corynoneura scutellata Winnertz (Chiro-nomidae: Diptera). Hydrobiologia 80: 63–66; 1981.CrossRefGoogle Scholar
  56. Kohler, S.L. Search mechanism for a stream grazer in patchy environments: the role of food abundance. Oecologia (Berlin) 62: 209–218; 1984.CrossRefGoogle Scholar
  57. Knudson, B.M. Ecology of the epiphytic diatom Tabellaria flocculosa (Roth) Kutz. var. flocculosa in three English lakes. J. Ecol. 45: 93–112; 1957.CrossRefGoogle Scholar
  58. Kornijöw, R. Seasonal migration by larvae of an epiphytic chironomid. Freshwat. Biol. 27: 85–89; 1992.CrossRefGoogle Scholar
  59. Lamberti, G.A.; Resh, V.H. Stream periphyton and insect herbivores: an experimental study of grazing by acaddisfly population. Ecology 64: 75–81; 1983.CrossRefGoogle Scholar
  60. Lamberti, G.A.; Moore, J.W. Aquatic insects as primary consumers. In: Resh, V.H.; Rosenberg, D.M., eds. The ecology of aquatic insects. New York: Praeger; 1984: 164–195.Google Scholar
  61. Lamberti, G.A.; Feminella, J.W.; Resh, V.H. Herbivory and intraspecific competition in a stream caddisfly population. Oecologia 73: 75–81; 1987a.CrossRefGoogle Scholar
  62. Lamberti, G.A.; Ashkenas, L.R.; Gregory, S.V.; Steinman, A.D. Effects of three herbivores on periphyton communities in laboratory streams. J. North Am. Benth. Soc. 6: 92–104; 1987b.CrossRefGoogle Scholar
  63. Lamberti, G.A.; Gregory, S.V.; Ashkenas, L.R.; Steinman, A.D.; Mclntire, C.D. Productive capacity of periphyton as a determinant of plant-herbivore interactions in streams. Ecology 70: 1840–1856; 1989.CrossRefGoogle Scholar
  64. Lamberti, G.G.; Gregory, S.V.; Ashkenas, L.R.; Li, J.L.; Steinman, A.D.; Mclntire, C.D. Influence of grazer type and abundance on plant-herbivore interactions in streams. Hydrobiologia 306: 237–247; 1995.CrossRefGoogle Scholar
  65. Mason, C.F.; Bryant, R.J. Periphyton production and grazing by chironomids in Alderfen broad, Norfolk. Freshwat. Biol. 5: 271–277; 1975.CrossRefGoogle Scholar
  66. Mazumder, A.; Taylor, W.D.; McQueen, D.J.; Lean, D.R.S. Effects of nutrients and grazers on periphyton phosphorus in lake enclosures. Freshwat. Biol. 22: 405–415; 1989.CrossRefGoogle Scholar
  67. McCormick, P.V. Lotic protistan herbivore selectivity and its potential impact on benthic algal assemblages. J. North Am. Benth. Soc. 10: 238–250; 1991.CrossRefGoogle Scholar
  68. McCormick, P.V. Evaluating the multiple mechanisms underlying herbivore-algal interactions in streams. Hydrobiologia 291: 47–59; 1994.CrossRefGoogle Scholar
  69. McCormick, P.V.; Stevenson, R.J. Grazer control of nutrient availability in the periphyton. Oecologia 86: 287–291; 1991.CrossRefGoogle Scholar
  70. Mills, D.H.; Wyatt, J.T. Ostracod reactions to non-toxic and toxic algae. Oecologia 17: 171–177; 1974.CrossRefGoogle Scholar
  71. Mitchell, S.F.; Wass, R.T. Quantifying herbivory: grazing consumption and interaction strength. Oikos 76: 573–576; 1996.CrossRefGoogle Scholar
  72. Moore, J.W. The role of algae in the diet of Asellus aquaticus L. and Gammarus pulex L. J. Anim. Ecol. 44: 719–730; 1975.CrossRefGoogle Scholar
  73. Moore, J.W. Factors influencing algal consumption and feeding rate in Heterotrissocladius changi Saether and Polypedilum nubeculosum. Oecologia 40: 219–227; 1979.Google Scholar
  74. Moss, B. The effects of fertilization and fish on community structure and biomass of aquatic macrophytes and epiphytic algal populations: an ecosystem experiment. J. Ecol. 64: 313–342; 1976.CrossRefGoogle Scholar
  75. Nicotri, M.E. Grazing effects of four marine intertidal herbivores on the microflora. Ecology 58: 1020–1032; 1977.CrossRefGoogle Scholar
  76. Sborne, P.L.; McLachlan, A.J. The effect of tadpoles on algal growth in temporary, rain-filled rock pools. Freshwat. Biol. 15: 77–87; 1985.CrossRefGoogle Scholar
  77. Patrick, R. Benthic stream communities. Am. Scientist 58: 546–549; 1970.Google Scholar
  78. Patterson, D.M.; Wright, S.J.Z. The epiphylous algal colonization of Elodea canadensis Michx.: community structure and development. N. Phytol. 103: 809–819; 1986.CrossRefGoogle Scholar
  79. Peer, R.L. The effects of microcrustaceans on succession and diversity of an algal microcosm community. Oecologia 68: 308–314; 1986.CrossRefGoogle Scholar
  80. Peterson, G.P. Gut passage and insect grazer selectivity of lotic dialoms. Freshwat. Biol. 18: 461–468; 1987.CrossRefGoogle Scholar
  81. Pinder, L.C.V. Biology of epiphytic Chironomidae (Diptera: Nematocera) in chalk streams. Hydrobiologia 248: 39–51; 1992.CrossRefGoogle Scholar
  82. Poff, N.L.; Ward, J.V. Heterogeneous currents and algal resources mediate in situ foraging activity of a mobile stream grazer. Oikos 65: 465–478; 1992.CrossRefGoogle Scholar
  83. Power, M.E. Resource enhancement by indirect effects of grazers: aimored catfish, algae, and sediment. Ecology 71: 897–904; 1990a.CrossRefGoogle Scholar
  84. Power, M.E. Effects of fish in river food webs. Science 250: 811–814; 1990b.PubMedCrossRefGoogle Scholar
  85. Power, M.E. Habitat heterogeneity and the functional significance of fish in river food webs. Ecology 73: 1675–1688; 1992.CrossRefGoogle Scholar
  86. Power, M.E.; Matthews, W.J. Algae-grazing minnows (Campostoma anomulum), piscivorous bass (Micropterus spp.), and the distribution of attached algae in a prairie-margin stream. Oecologia 60: 328–332; 1983.CrossRefGoogle Scholar
  87. Power, M.E.; Matthews, W.J.; Stewart, A.J. Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology 66: 1448–1456; 1985.CrossRefGoogle Scholar
  88. Prejs, K. Bottom fauna. In: Pieczynska, E., ed. Selected problems of lake littoral ecology. Warsaw: University of Warsaw; 1976: 123–144.Google Scholar
  89. Pringle, C.M. Effects of chironomid (Insecta: Diptera) tube-building activities on stream diatom communities. J. Phycol. 21: 185–194; 1985.CrossRefGoogle Scholar
  90. Rosemond, A.D.; Mulholland, P.J.; Elwood, J.W. Top-down and bottom-up control on stream periphyton: effects of nutrients and herbivores. Ecology 74: 1264–1280; 1993.CrossRefGoogle Scholar
  91. Sarvala, J.; Ilmavirta, V.; Paasivirta, L.; Salonen, K. The ecosystem of the oligotrophic lake Paajarvi. 3. Secondary production and the ecological energy budget of the lake. Verh. Int. Verein. Limnol. 21: 454–459; 1981.Google Scholar
  92. Schindler, D.W.; Mills, K.H.; Malley, D.F.; Findlay, D.L.; Shearer, J.A.; Davies, I.J.; Turner, M.A.; Linsey, G.A.; Cruickshank, D.R. Long term ecosystem stress: the effects of years of exprimental acidification on a small lake. Science 228: 1395–1401; 1985.PubMedCrossRefGoogle Scholar
  93. Scimgeour, G.J.; Culp, J.M.; Bothwell, M.L.; Wrona, F.J.; McKee, M.H. Mechanisms of algal patch depletion: importance of consumptive and nonconsumptive losses in mayfly diatom systems. Oecologia 85: 343–348; 1991.CrossRefGoogle Scholar
  94. Scott, W.B.; Crossman, E.J. Freshwater fishes of Canada. Bull. Fish. Res. Bd. Can. 184: 1–966; 1973.Google Scholar
  95. Seale, D.B. Influence of amphibian larvae on primary production, nutrient flux, and competition in a pond ecosystem. Ecology 61: 1531–1550; 1980.CrossRefGoogle Scholar
  96. Sleigh, M.A.; Baidock, B.M.; Baker, J.H. Protozoan communities in chalk streams. Hydro-biologia 248: 53–64; 1992.CrossRefGoogle Scholar
  97. Sozska, G.J. Ecological relations between invertebrates and submerged macrophytes in the lake littoral. Ekol. Pol. 23: 393–395; 1975.Google Scholar
  98. Steinman, A.D.; Mclntire, C.D. The effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. J. Phycol. 22: 352–361; 1986.CrossRefGoogle Scholar
  99. Steinman, A.D.; Mclntire, C.D. Effects of irradiance on the community structure and biomass of algal assemblages in laboratory streams. Can. J. Fish. Aquat. Sci. 44: 1640–1648; 1987.CrossRefGoogle Scholar
  100. Steinman, A.D.; Mclntire, C.D.; Gregory, S.V.; Lamberti, G.A.; Ashkenas, L.R. Effects of herbivore type and density on taxonomic structure and physiognomy of algal assemblages in laboratory streams. J. North Am. Benth. Soc. 6: 175–188; 1987.CrossRefGoogle Scholar
  101. Sumner, W.T.; Mclntire, CD. Grazer-periphyton interactions in laboratory streams. Arch. Hydrobiol. 93: 135–157; 1982.Google Scholar
  102. Tallman, R.F.; Mills, K.H.; Rotter, R.G. The comparative ecology of pearl dace (Semotilus margarita) and fathead minnow (Pimephales promelas) in Lake 114, the Experimental Lakes Area, northwestern Ontario, with an appended key to the cyprinids of the Experimental Lakes Area. Can. Manage. Rep. Fish. Aquat. Sci. 1756: 1–27; 1984.Google Scholar
  103. Titmus, G.; Badcock, R.M. Distribution and feeding of larval chironomidae in a gravel-pit lake. Freshwat. Biol. 11: 263–271; 1981.CrossRefGoogle Scholar
  104. Tokeshi, M. Population dynamics, life histories and species richness in an epiphytic chironomid community. Freshwat. Biol. 16: 431–441; 1986a.CrossRefGoogle Scholar
  105. Tokeshi, M. Resource utilization, overlap and temporal community dynamics: a null model analysis of an epiphytic chironomid community. J. Anim. Ecol. 55: 491–506; 1986b.CrossRefGoogle Scholar
  106. Underwood, G.J.C Growth enhancement of the macrophyte Ceratophyllum demersum in the presence of the snail Planorbis planorbis: the effect of grazing and chemical conditioning. Freshwat. Biol. 26: 325–334; 1991.CrossRefGoogle Scholar
  107. Vaughn, C.C. The role of periphyton abundance and quality in the microdistribution of a stream grazer, Helicopsyche borealis (Trichoptera: Helicopsychidae). Freshwat. Biol. 16: 485–493; 1986.CrossRefGoogle Scholar
  108. Whiteside, M.C.; Williams, J.B.; White, C.P. Seasonal abundance and pattern of chydorid Cladocera in mud and vegetative habitats. Ecology 59:1177–1188; 1978.CrossRefGoogle Scholar
  109. Young, O.W. A limnological investigation of periphyton in Douglas Lake, Michigan. Trans. Am. Microsc. Soc. 64:1–20; 1945.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • John I. Jones
  • Brian Moss
  • Johnstone O. Young

There are no affiliations available

Personalised recommendations