Advertisement

Clear Water Associated with a Dense Chara Vegetation in the Shallow and Turbid Lake Veluwemeer, The Netherlands

  • Marcel S. Van den Berg
  • Hugo Coops
  • Marie-Louise Meijer
  • Marten Scheffer
  • Jan Simons
Part of the Ecological Studies book series (ECOLSTUD, volume 131)

Abstract

The presence of submerged aquatic macrophytes in lakes is affected by the underwater light climate. Lakes with clear water can show abundant macrophyte vegetation, whereas lakes with turbid water usually have a poor submerged vegetation (Moss, 1990; Scheffer et al., 1993). Moreover, macrophytes improve their own light climate by enhancing the water transparency.

Keywords

White Dwarf Surface Helium Cool Star Composite Spectrum Helium Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blom, G.; Van Duin, E.H.R.; Vermaat, J.E. Factors contributing to light attenuation in Lake Veluwe. In: van Vierssen, W.; Hootsmans, M.J.M; Vermaat, J. Lake Veluwe, a macro-phyte dominated system under eutrophication stress. Dordrecht: Kluwer Academic Publishers; 1994: 158–174.Google Scholar
  2. Carignan, R. An empirical model to estimate the relative importance of roots in phosphorus uptake by aquatic macrophytes. Can. J. Fish. Aquat. Sci. 39: 243–247; 1982.CrossRefGoogle Scholar
  3. Culver, D.A.; Boucherie, M.M.; Bean, D.J.; Fletcher, J.W. Biomass of freshwater Crustacean Zooplankton from length weight regressions. Can. J. Fish. Aquat Sci. 42: 1380–1390; 1985.CrossRefGoogle Scholar
  4. Forsberg, C.; Kleiven, S.; Willén, T. Absence of allelopathic effects of Cham on phyto-plankton in situ. Aquat. Bot. 38: 289–294; 1990.CrossRefGoogle Scholar
  5. Granéli, W.; Solander, D. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170: 245–266; 1988.CrossRefGoogle Scholar
  6. Hootsmans, M.J.M.; Blindow, I. Allelopathic limitation of algal growth by macrophytes. In: van Vierssen, W.; Hootsmans, M.J.M.: Vermaat, J., Lake Veluwe, a macrophyte dominated system under eutrophication stress. Dordrecht: Kluwer Academic Publishers; 1994: 175–192.Google Scholar
  7. James, W.F.; Barko, J.W. Macrophyte influence on the zonation of sediment accretion and composition in a north-temperate reservoir. Arch. Hydrobiol. 120: 129–142; 1990.Google Scholar
  8. Jasser, I. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 21–32; 1995.CrossRefGoogle Scholar
  9. Jeppesen, E.; Jensen, J.P.; Søndergaard, M.; Lauridsen, T.; Pedersen, L.J.; Jensen, L. Top down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164; 1997.CrossRefGoogle Scholar
  10. Jonker, R.R.; Meulemans, J.T.; Dubelaar, G.B.J.; Wilkins, M.F.; Ringelberg, J. Flow-cytometry: a powerful tool in analysis of biomass distributions in phytoplankton. Wat. Sci. Techn. 32: 177–182; 1995.CrossRefGoogle Scholar
  11. Kirk, K.L.; Gilbert, J.J. Suspended clay and the population dynamics of planktonic rotifers and Cladocerans. Ecology 71: 1741–1755; 1990.CrossRefGoogle Scholar
  12. Koschel, R.; Benndorf, J.; Proft, G.; Recknagel, F. Calcite precipitation as a natural control mechanism of eutrophication. Arch. Hydrobiol. 98: 380–408; 1983.Google Scholar
  13. Kufel, L.; Ozimek, T. Can Chara control phosphorus cycling in Lake Luknajno (Poland)? Hydrobiologia 275/276: 277–283; 1994.CrossRefGoogle Scholar
  14. Moss, B. Engineering and biological approaches to the restoration from eutrophication in which aquatic plant communities are important components. Hydrobiologia 275/276: 367–377; 1990.CrossRefGoogle Scholar
  15. Ozimek, T.; Gulati, R.D.; van Donk, E. Can macrophytes be useful in biomanipulation of lakes, the Lake Zwemlust example. Hydrobiologia 200/201: 399–407; 1990.CrossRefGoogle Scholar
  16. Petticrew, E.L.; Kalff, J. Water flow and clay retention in submerged macrophyte beds. Can. J. Fish. Aquat. Sci. 49: 2483–2489; 1992.CrossRefGoogle Scholar
  17. Reynholds, C.S. The ecology of freshwater phytoplankton. London: Cambridge University Press; 1984.Google Scholar
  18. Scheffer, M.; Hosper, S.H.; Meijer, M.-L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 276–279; 1993.CrossRefGoogle Scholar
  19. Scheffer, M.; Van den Berg, M.; Breukelaar, A.; Breukers, C; Coops, H.; Doef, R.; Meijer, M.-L. Vegetated areas with clear water in turbid shallow lakes. Aquat. Bot. 193–196; 1994.Google Scholar
  20. Schriver, P.; Bøgestrand, J.; Jeppesen, E.; Søndergaard, M. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large scale enclosure experiments in a shallow eutrophic lake. Freshwat. Biol. 33: 255–270; 1995.CrossRefGoogle Scholar
  21. Sommer, U. Planktologie. Berlin: Springer-Verlag; 1995.Google Scholar
  22. Timms, R.M.; Moss, B. Prevention of growth of potentially dense phytoplankton populations by Zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486; 1984.CrossRefGoogle Scholar
  23. Van Duin, E.H.S. Sediment transport, light and algal growth in the Markermeer. Thesis, Agriculture University, Wageningen; 1992.Google Scholar
  24. Wium-Andersen, S.; Anthoni, U.C.; Christophersen, C.; Houen, G. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187–190; 1982.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Marcel S. Van den Berg
  • Hugo Coops
  • Marie-Louise Meijer
  • Marten Scheffer
  • Jan Simons

There are no affiliations available

Personalised recommendations