Bacterioplankton and Carbon Turnover in a Dense Macrophyte Canopy

  • Morten Søndergaard
  • Jon Theil-Nielsen
  • Kirsten Christoffersen
  • Louise Schlüter
  • Erik Jeppesen
  • Martin Søndergaard
Part of the Ecological Studies book series (ECOLSTUD, volume 131)


Studies on cascading trophic interactions in lakes have shown that planktonic food web changes may take place to the level of protozoans (reviewed by Carpenter and Kitchell, 1993; Riemann and Christoffersen, 1993). It is more unclear if and how cascading might influence bacterioplankton (Jeppesen et al., 1992; Christoffersen et al, 1993; Pace, 1993). From studies in oligo-mesotrophic temperate lakes, Pace (1993) concluded “that bacteria responded to changes in phytoplankton and increases in nutrients, but not to changes in Zooplankton.“ More generally, it was suggested that “trophic cascades do not have immediately obvious consequences for microbial processes in lakes” (Kitchell and Carpenter, 1993). In accordance, Jeppesen et al. (1992) found that a trophic cascade with high grazing by clado-cerans and a four- to sixfold reduction in phytoplankton biomass only slightly altered bacterioplankton production in two fish-manipulated shallow and eu-trophic Danish lakes.


Orbital Period Radial Velocity Trophic Cascade Common Envelope Radial Velocity Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carlson, C.A.; Ducklow, H.W. Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat. Microb. Ecol. 10: 69–85; 1996.CrossRefGoogle Scholar
  2. Carpenter, S.R.; Kitchell, J.F., eds. The trophic cascade in lakes. Cambridge: Cambridge University Press; 1993.Google Scholar
  3. Christoffersen, K.; Riemann, B.; Klysner, A.; Sondergaard, M. Potential role of zoo-plankton in structuring a plankton community in eutrophic lake water. Limnol. Ocean-ogr. 38: 561–573; 1993.CrossRefGoogle Scholar
  4. Coveney, M.F.; Wetzel, R.G. Biomass, production, and specific growth rate of bacterio-plankton and coupling to phytoplankton in an oligotrophic lake. Limnol. Oceanogr. 40: 1187–1200; 1995.CrossRefGoogle Scholar
  5. del Giorgio, P.A.; Peters, R.H. Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol. Oceanogr. 39: 772–787; 1994.CrossRefGoogle Scholar
  6. Fagerbakke, K.M.; Heldal, M.; Norland, S. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native and cultured bacteria. Aquat. Microb. Ecol. 10: 15–27; 1996.CrossRefGoogle Scholar
  7. Findlay, S.; Pace, M.L.; Lints, D.; Howe, K. Bacterial metabolism of organic carbon in the tidal freshwater Hudson Estuary. Mar. Ecol. Prog. Ser 89: 147–153; 1992.CrossRefGoogle Scholar
  8. Fuhrman, J.A.; Azam, F. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39: 1085–1095; 1980.PubMedGoogle Scholar
  9. Hessen, D.O. Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hydrobiologia 229: 115–123; 1992.CrossRefGoogle Scholar
  10. Hygum, B.; Petersen, J.W.; Søndergaard, M. Dissolved organic carbon release by zoo-plankton grazing activity—a high quality substrate pool for bacteria. J. Plankton Res. 19: 97–111; 1997.CrossRefGoogle Scholar
  11. Jeppesen, E.; Sortkjaer, O.; Søndergaard, M.; Erlandsen, M. Impact of a trophic cascade on heterotrophic bacterioplankton production in two shallow fish-manipulated lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37:219–231; 1992.Google Scholar
  12. Kairesalo, T.; Lehtovaara, A.; Saukkonen, P. Littoral-pelagial interchange and the decomposition of dissolved organic matter in a polyhumic lake. Hydrobiologia 229: 199–224; 1992.CrossRefGoogle Scholar
  13. Kitchell, J.F.; Carpenter, S.R. Synthesis and new directions. In: Carpenter, S.R.; Kitchell, J.F., eds. The trophic cascade in lakes. Cambridge: Cambridge University Press; 1993: 332–350.Google Scholar
  14. Norland, S. The relationship between biomass and volume of bacteria. In: Kemp, P.F.; Sherr, B.F.; Sherr, E.B.; Cole, J.J., eds. Handbook of methods in aquatic microbial ecology. Boca Raton, FL: Lewis Publ.; 1993: 303–307.Google Scholar
  15. Pace, M.L. Heterotrophic microbial processes. In: Carpenter, S.R.; Kitchell, J.F., eds. The trophic cascade in lakes. Cambridge: Cambridge University Press; 1993: 252–277.Google Scholar
  16. Porter, K.; Feig, Y.S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948; 1980.CrossRefGoogle Scholar
  17. Riemann, B.; Christoffersen, K. Microbial trophodynamics in temperate lakes. Mar. Microb. Food Webs 7:69–100; 1993.Google Scholar
  18. Schlüter, L.; Riemann, B.; Søndergaard, M. Nutrient limitation in relation to phytoplankton carotenoid/chlorophyll a ratios in freshwater mesocosms. J. Plankton Res. 19: 891–906; 1997.CrossRefGoogle Scholar
  19. Simek, K.; Macek, M.; Pernthaler, J.; Straskrabova, V.; Psenner, R. Can freshwater planktonic ciliates survive on a diet of picoplankton? J. Plankton Res. 18: 597–613; 1996.CrossRefGoogle Scholar
  20. Simon, M.; Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213; 1989.CrossRefGoogle Scholar
  21. Smits, J.; Riemann, B. Cell production derived from 3-H-thymidine incorporation using freshwater bacteria. Appl. Environ. Microbiol. 54: 2213–2219; 1988.PubMedGoogle Scholar
  22. Søndergaard, M.; Middelboe, M. Measurements of paniculate organic carbon: a note on the use of glass fiber (GF/F) and Anodisc filters. Arch. Hydrobiol. 127: 73–85; 1993.Google Scholar
  23. Søndergaard, M.; Hansen, B.; Markager, S. Dynamics of dissolved organic carbon lability during a clear water phase in a eutrophic lake. Limnol. Oceanogr. 40: 46–54; 1995.CrossRefGoogle Scholar
  24. Søndergaard, M.; Theil-Nielsen, J. Bacterial growth efficiency in lake water cultures. Aquat. Microb. Ecol. 12: 115–122; 1997.CrossRefGoogle Scholar
  25. Timms, R.M.; Moss, B. Prevention of growth of potentially dense phytoplankton populations by Zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486; 1984.CrossRefGoogle Scholar
  26. Tranvik, L. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 107–114; 1992.CrossRefGoogle Scholar
  27. Wetzel, R.G. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198; 1992.CrossRefGoogle Scholar
  28. Wright, R.T. Methods for evaluating the interaction of substrate and grazing as factors controlling planktonic bacteria. Arch. Hydrobiol. Beih. Ergebn. Limnol. 31: 229–242; 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Morten Søndergaard
  • Jon Theil-Nielsen
  • Kirsten Christoffersen
  • Louise Schlüter
  • Erik Jeppesen
  • Martin Søndergaard

There are no affiliations available

Personalised recommendations