Large-Scale Optimization with Applications pp 99-121 | Cite as

# Issues in Large-Scale Global Molecular Optimization

Chapter

## Abstract

We discuss the formulation of optimization problems that arise in the study of distance geometry, ionic systems, and molecular clusters. We show that continuation techniques based on global smoothing are applicable to these molecular optimization problems, and we outline the issues that must be resolved in the solution of large-scale molecular optimization problems.

## Keywords

Molecular Conformation Gaussian Quadrature Molecular Cluster Potential Energy Function Ionic System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- [1]S. Al-Homidan and R. Fletcher,
*Hybrid methods for finding the nearest Euclidean distance matrix*, technical report, The University of Dundee, Dundee, Scotland, 1995.Google Scholar - [2]E.L. Allgower and K. Georg,
*Numerical Continuation: An Introduction*, Springer-Verlag, 1990.Google Scholar - [3]L.M. Blumenthal,
*Theory and Applications of Distance Geometry*, Oxford University Press, 1953.Google Scholar - [4]A.T. Brünger and M. Nilges,
*Computational challenges for macromolecu-lar structure determination by X-ray crystallography and solution NMR-spectroscopy*, Q. Rev. Biophys., 26 (1993), pp. 49–125.CrossRefGoogle Scholar - [5]R.H. Byrd, E. Eskow, and R.B. Schnabel,
*A new large-scale global optimization method and its application to Lennard-Jones problems*, Technical report CU-CS-630-92, Department of Computer Science, University of Colorado, Boulder, Colorado, revised, 1995.Google Scholar - [6]R.H. Byrd, E. Eskow, R.B. Schnabel, and S.L. Smith,
*Parallel global optimization: Numerical methods, dynamic scheduling methods, and application to molecular configuration*, in Parallel Computation, B. Ford and A. Fincham, eds., Oxford University Press, 1993, pp. 187–207.Google Scholar - [7]T.F. Coleman, D. Shalloway, and Z. Wu,
*Isotropic effective energy simulated annealing searches for low energy molecular cluster states*, Comp. Optim. Applications, 2 (1993), pp. 145–170.MathSciNetMATHCrossRefGoogle Scholar - [8]D. Shalloway, and Z. Wu —,
*A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing*, J. Global Optim., 4 (1994), pp. 171–185.MathSciNetMATHCrossRefGoogle Scholar - [9]G.M. Crippen and T.F. Havel,
*Distance Geometry and Molecular Conformation*, John Wiley &Sons, 1988.Google Scholar - [10]Y.M. Ermoliev, V.l. Norkin, and R.J.-B. Wets,
*The minimization of discontinuous functions: Mollifier subgradients*, SIAM J. Control Optim., 33 (1995), pp. 149–167.MathSciNetMATHCrossRefGoogle Scholar - [11]M.R. Garby and D.S. Johnson,
*Computers and Intractability*, W. H. Freeman, 1979.Google Scholar - [12]W. Gautschi,
*Algorithm 726:*ORTHOPOL-*A package of routines for generating orthogonal polynomials and Gauss-type quadrature rules*, ACM Trans. Math. Software, 20 (1994), pp. 21–62.MATHCrossRefGoogle Scholar - [13]W. Glunt, T.L. Hayden, and M. Raydan,
*Molecular conformation from distance matrices*, J. Comp. Chem., 14 (1993), pp. 114-120.Google Scholar - [14]T.L. Hayden, and M. Raydan —,
*Preconditioners for distance matrix algorithms*, J. Comp. Chem., 15 (1994), pp. 227–232.CrossRefGoogle Scholar - [15]L. Greengard,
*The Rapid Evaluation of Potential Fields in Particle Systems*, MIT Press, 1988.Google Scholar - [16]L. Greengard and V. Rokhlin,
*A fast algorithm for particle simulation*, J. Corn-put. Phys., 73 (1987), pp. 325–348.MathSciNetMATHCrossRefGoogle Scholar - [17]A. Griewank,
*Generalized descent for global optimization*, J. Optim. Theory Appl., 34 (1981), pp. 11–39.MathSciNetMATHCrossRefGoogle Scholar - [18]J. Guddat, F.G. Vazquez, and H.T. Jongen,
*Parametric Optimization: Singularities, Pathfollowing and Jumps*, John Wiley & Sons, 1990.Google Scholar - [19]H. Haberland, ed.,
*Clusters of Atoms and Molecules, Springer Series in Chemical Physics*, vol. 52, Springer-Verlag, 1994.Google Scholar - [20]R.W. Hasse and J.P. Schiffer,
*The structure of the cylindrically confined coulomb lattice*, Ann. Physics, 203 (1990), pp. 419–448.CrossRefGoogle Scholar - [21]T.F. Havel,
*An evaluation of computational strategies for use in the determination of protein structure from distance geometry constraints obtained by nuclear magnetic resonance*, Prog. Biophys. Mol. Biol., 56 (1991), pp. 43–78.CrossRefGoogle Scholar - [22]B.A. Hendrickson,
*The molecule problem: Determining conformation from pair-wise distances*, PhD thesis, Cornell University, Ithaca, New York, 1991.Google Scholar - [23]—,
*The molecule problem: Exploiting structure in global optimization*, SIAM J. Optimization, 5 (1995), pp. 835–857.MathSciNetMATHCrossRefGoogle Scholar - [24]M.R. Hoare,
*Structure and dynamics of simple microclusters*, Advances in Chemical Physics, 40 (1979), pp. 49–135.CrossRefGoogle Scholar - [25]M.R. Hoare and J. Mcinnes,
*Statistical mechanics and morphology of very small atomic clusters*, Faraday Discuss. Chem. Soc, 61 (1976), pp. 12–24.CrossRefGoogle Scholar - [26]M.R. Hoare and P. Pal,
*Statistics and stability of small assemblies of atoms*, J.Cryst. Growth, 17 (1972), pp. 77–96.CrossRefGoogle Scholar - [27]J. Jellinek,
*Theoretical dynamical studies of metal clusters and cluster-ligand systems*, in Metal-Ligand Interactions: Structure and Reactivity, N. Russo, ed., Kluwer Academic Publishers, 1995 (in press).Google Scholar - [28]V.Y. Katkovnik and O.Y. Kulchitskii,
*Convergence of a class of random search algorithms*, Automat. Remote Control 8 (1972), pp. 81–87.MathSciNetGoogle Scholar - [29]J. Kostrowicki and L. Piela,
*Diffusion equation method of global minimization: Performance for standard functions*, J. Optim. Theory Appl., 69 (1991), pp. 269–284.MathSciNetMATHCrossRefGoogle Scholar - [30]J. Kostrowicki, L. Piela, B.J. Cherayil, and H.A. Scheraga,
*Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms*, J. Phys. Chem., 95 (1991), pp. 4113–4119.CrossRefGoogle Scholar - [31]J. Kostrowicki and H.A. Scheraga,
*Application of the diffusion equation method for global optimization to oligopeptides*, J. Phys. Chem., 96 (1992), pp. 7442–7449.CrossRefGoogle Scholar - [32]J. Kreimer and R.Y. Rubinstein,
*Nondifferentiable optimization via smooth approximation: General analytical approach*, Math. Oper. Res., 39 (1992), pp. 97–119.MathSciNetMATHGoogle Scholar - [33]I.D. Kuntz, J.F. Thomason, and C.M. Oshiro,
*Distance geometry*, in Methods in Enzymology, N. J. Oppenheimer and T. L. James, eds., vol. 177, Academic Press, 1993, pp. 159–204.Google Scholar - [34]C.G. Lambert and J.A. Board,
*A multipole-based algorithm for efficient calculation of forces and potentials in macroscopic periodid assemblies of particles*, Technical report 95-001, Department of Electrical Engineering, Duke University, Durham, North Carolina, 1995.Google Scholar - [35]J.F. Leathrum and J.A. Board,
*The parallel fast multipole algorithm in three dim ensions*, Technical report TR92-001, Department of Electrical Engineering, Duke University, Durham, North Carolina, 1992.Google Scholar - [36]D.C. Liu and J. Nocedal,
*On the limited memory BFGS method for large scale optimization*, Math. Programming, 45 (1989), pp. 503–528.MathSciNetMATHCrossRefGoogle Scholar - [37]J.J. Moré and Z. Wu,
*E-opiimal solutions to distance geometry problems via global continuation*, in Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, P. M. Pardalos, D. Shalloway, and G. Xue, eds., American Mathemtical Society, 1995, pp. 151–168.Google Scholar - [38]Z. Wu —,
*Global continuation for distance geometry problems*, Preprint MCS-P505-0395, Argonne National Laboratory, Argonne, Illinois, 1995.CrossRefGoogle Scholar - [39]Z. Wu —,
*Smoothing techniques for macromolecular global optimization*, Preprint MCS-P542-0995, Argonne National Laboratory, Argonne, Illinois, 1995.Google Scholar - [40]J.A. Northby,
*Structure and binding of Lennard-Jones clusters:*13≤ n ≤147, Journal of Chemical Physics, 87 (1987), pp. 6166–6177.CrossRefGoogle Scholar - [41]M. Oresic and D. Shalloway,
*Hierarchical characterization of energy landscapes using Gaussian packet states*, J. Chem. Phys., 101 (1994), pp. 9844–9857.CrossRefGoogle Scholar - [42]P.M. Pardalos, D. Shalloway, and G. Xue,
*Optimization methods for computing global minima of nonconvex potential energy functions*, J. Global Optim., 4 (1994), pp. 117–133.MathSciNetMATHCrossRefGoogle Scholar - [43]L. Piela, J. Kostrowicki, and H.A. Scheraga,
*The multiple-minima problem in the conformational analysis of molecules: Deformation of the protein energy hypersurface by the diffusion equation method*, J. Phys. Chem., 93 (1989), pp. 3339–3346.CrossRefGoogle Scholar - [44]R. Rafac, J.P. Schiffer, J.S. H ängst, D.H.E. Dubin, and D.J. Wales,
*Stable configurations of confined cold ionic systems*, Proc. Natl. Acad. Sci. U.S.A., 88 (1991), pp. 483–486.CrossRefGoogle Scholar - [45]W.T. Rankin and J.A. Board,
*A portable distributed implementation of the parallel multipole tree algorithm*, Technical report 95-002, Department of Electrical Engineering, Duke University, Durham, North Carolina, 1995.Google Scholar - [46]P.J. Reynolds, ed.,
*On Clusters and Clustering*, North-Holland, 1993.Google Scholar - [47]R.Y. Rubinstein,
*Smoothed functionals in stochastic optimization*, Math. Oper. Res., 8 (1983), pp. 26–33.MathSciNetMATHCrossRefGoogle Scholar - [48]J.B. Saxe,
*Embeddability of weighted graphs in k-space is strongly NP-hard*in Proc. 17th Allerton Conference in Communications, Control and Computing, 1979, pp. 480–489.Google Scholar - [49]H.A. Scheraga,
*Predicting three-dimensional structures of oligopeptides*, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, eds., vol. 3, VCH Publishers, 1992, pp. 73–142.Google Scholar - [50]J.P. Schiffer,
*Phase transitions in anisotropically confined ionic crystals*, Phys. Rev. Lett., 70 (1993), pp. 818–821.CrossRefGoogle Scholar - [51]T. Schlick and A. Fogelson,
*TNPACK—A truncated Newton minimization package for large-scale problems: 7. Algorithms and usage*, ACM Trans. Math. Software, 18 (1992), pp. 46–70.MATHCrossRefGoogle Scholar - [52]A. Fogelson —,
*TNPACK—A truncated Newton minimization package for large-scale problems: II. Implementations examples*, ACM Trans. Math. Software, 18 (1992), pp. 71–111.MATHCrossRefGoogle Scholar - [53]D. Shalloway,
*Application of the renormalization group to deterministic global minimization of molecular conformation energy functions*, J. Global Optim., 2 (1992), pp. 281–311.MathSciNetMATHCrossRefGoogle Scholar - [54]—
*Packet annealing: A deterministic method for global minimization, application to molecular conformation*, in Recent Advances in Global Optimization, C. Floudas and P. Pardalos, eds., Princeton University Press, 1992, pp. 433–477.Google Scholar - [55]N.M. Steen, G.D. Byrne, and E.M. Gelbard,
*Gaussian quadratures for the integrals 120-1J exp(-x2)f(x)dx and f*exp(-x2)f(x)dx*, Math. Comp., 23 (1969), pp. 661–674MathSciNetMATHGoogle Scholar - [56]F.H. Stillinger,
*Role of potential-energy scaling in the low-temperature relaxation behavior of amorphous materials*, Phys. Rev. B, 32 (1985), pp. 3134–3141.CrossRefGoogle Scholar - [57]J.E. Straub,
*Optimization techniques with applications to proteins*, preprint, Boston University, Department of Chemistry, Boston, Massachusetts, 1994.Google Scholar - [58]J.E. Straub, J. Ma, and P. Amara,
*Simulated anealing using coarse-grained cla-sical dynamics: Fokker-Planck and Smoluchowski dynamics in the Gaussian density approximation*, J. Chem. Phys., 103 (1995), pp. 1574–1581.CrossRefGoogle Scholar - [59]A.H. Stroud and D. Secrest,
*Gaussian Quadrature Formulas*, Prentice-Hall, Inc., 1966.Google Scholar - [60]Z. Wu,
*The effective energy transformation scheme as a special continuation approach to global optimization with application to molecular conformation*, Preprint MCS-P442-0694, Argonne National Laboratory, Argonne, Illinois, 1994.Google Scholar - [61]G.L. Xue,
*Improvement on the Northby algorithm for molecular conformation: Better solutions*, J. Global. Optim., 4 (1994), pp. 425–440.MathSciNetMATHCrossRefGoogle Scholar

## Copyright information

© Springer Science+Business Media New York 1997