Skip to main content

The Limnology of Smith Lake

  • Chapter
Freshwaters of Alaska

Part of the book series: Ecological Studies ((ECOLSTUD,volume 119))

Abstract

Smith Lake (64°52′N and 146°52′W) is located in the Tanana River valley in the interior region of Alaska between two major mountain ranges, the Alaska Range to the south and the Brooks Range to the north (see Fig. 1.1, Chapter 1). Here, rolling hilly terrain is transected by the Yukon-Tanana river system, forming a valley that exceeds 150km in width. The region experiences large seasonal temperature extremes, with warm dry summers and very cold dry winters, and a mean annual precipitation of only about 30 cm. The Smith Lake watershed is occupied by typical taiga forest, composed of spruce, aspen, birch, and alder, with a ground cover of subarctic muskeg (Fig. 5.1). Black spruce (Picea mariana) dominates. The mosses that comprise the muskeg ground cover have low decomposition rates. Research on Smith Lake has focused on the nitrogen cycle, but a considerable body of limnological information has been amassed for this lake in conjunction with that work (Alexander, 1970; Alexander and Barsdate, 1971; Clasby, 1972; Dugdale, 1965; Goering and Dugdale, 1966; Gu, 1992, 1993; Gu and Alexander, 1993a-c; Gu et al., 1994). The initial research was carried out between 1962 and 1967, with a second research program undertaken between 1988 and 1993. The techniques applied to limnological work have changed somewhat in the interim and therefore the results are not exactly comparable; nevertheless this chapter offers an excellent opportunity to make reasonable comparisons to determine whether the lake has changed significantly over the 20 year period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander V (1970) Relationships between turnover rates in the biological nitrogen cycle and algal productivity. Proc 25th Ind Waste Conf, Purdue Univ Eng Ext Serv 137:1–7.

    Google Scholar 

  • Alexander V, Barsdate RJ (1971) Physical limnology, chemistry and plant productivity of a taiga lake. Int Rev Gesamten Hydrobiol 56:825–872.

    Article  CAS  Google Scholar 

  • Alexander V, Barsdate RJ (1974) Limnological studies of a subarctic lake system. Int Rev Gesamten Hydrobiol 59:737–753.

    Article  CAS  Google Scholar 

  • Barko JW, Gunnison D, Carpenter SR (1991) Sediment interactions with submersed macrophyte growth and community dynamics. Aquat Bot 41:41–65.

    Article  Google Scholar 

  • Best EPH (1980) Effects of nitrogen on the growth and nitrogenous compounds of Ceratophyllum demersum. Aquat Bot 8:197–206.

    Article  CAS  Google Scholar 

  • Billaud VA (1968) Nitrogen fixation and the utilization of other inorganic nitrogen sources in a subarctic lake. J Fish Res Board Can 25:2101–2110.

    Article  CAS  Google Scholar 

  • Blinn DW, Davies RW (1990) Concomitant diel vertical migration of a predatory leech and its amphipod prey. Freshwater Biol 24:401–407.

    Article  Google Scholar 

  • Blois C (1985) Diets and resource partitioning between larvae of three anisopteran species. Hydrobiologia 126:221–227.

    Article  Google Scholar 

  • Butler MI, Burns CW (1991) Predation by a water mite (Fiona exigua) on enclosed populations of Zooplankton. Hydrobiologia 220:37–48.

    Article  Google Scholar 

  • Clasby RC (1972) Denitrification in a Subarctic Lake. M.S. thesis, University of Alaska, Fairbanks.

    Google Scholar 

  • Davies RW, Wrona FJ, Everett RP (1978) A serological study of prey selection by Nephelopsis obscura Verrill (Hirudinoida). Can J Zool 56:587–591.

    Article  Google Scholar 

  • Davies RW, Wrona FJ, Linton L, Wilkialis J (1981) Inter-and intra-specific analyses of the food niches of two sympatric species of Erpobdellidae (Hirudinoidea) in Alberta, Canada. Oikos 37:105–111.

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506.

    Article  Google Scholar 

  • Delwiche CC, Steyn PL (1970) Nitrogen isotope fractionation in soils and microbial reactions. Environ Sci Technol 4:929–935.

    Article  CAS  Google Scholar 

  • Dugdale VA (1965) Inorganic nitrogen metabolism and phytoplankton primary productivity in a subarctic lake. Ph.D. thesis, University of Alaska, Fairbanks.

    Google Scholar 

  • Fry B (1991) Stable isotope diagrams of freshwater food webs. Ecology 72:2293–2297.

    Article  Google Scholar 

  • Goering JJ, Dugdale VA (1966) Estimates of the rates of denitrification in a subarctic lake. Limnol Oceanogr 11:113–117.

    Article  CAS  Google Scholar 

  • Gu B (1992) Dissolved nitrogen utilization by phytoplankton in a subarctic lake. M.S. thesis, University of Alaska, Fairbanks.

    Google Scholar 

  • Gu B (1993) Nitrogen isotope cycling in a subarctic lacustrine system. Ph.D. thesis, University of Alaska, Fairbanks.

    Google Scholar 

  • Gu B, Alexander V (1993a) Dissolved nitrogen uptake by a cyanobacterial bloom (Anabaena flos-aquae) in a subarctic Alaska lake. Appl Environ Microbiol 59:422–430.

    PubMed  CAS  Google Scholar 

  • Gu B, Alexander V (1993b) Estimation of N2 fixation based on differences in natural abundance of 15N among freshwater N2-fixing and non-N2-fixing algae. Oecologia 96:43–48.

    Article  Google Scholar 

  • Gu B, Alexander V (1993c) Seasonal variations in dissolved inorganic nitrogen utilization by phytoplankton in a subarctic Alaska lake. Arch Hydrobiol 126:273–288.

    CAS  Google Scholar 

  • Gu B, Schell DM, Alexander V (1994) Stable carbon and nitrogen isotopic analysis of the plankton food web in a subarctic lake. Can J Fish Aquat Sci 51:1338–1344.

    Article  Google Scholar 

  • Hammar J (1989) Freshwater ecosystems of polar regions: Vulnerable resources. Ambio 18:7–22.

    Google Scholar 

  • Hobbie JE (1973) Arctic limnology: A review. In Britton ME (Ed) Alaskan Arctic tundra. Arctic Institute of North America Technical Paper 25, 127–168. Washington DC.

    Google Scholar 

  • Hoering TC, Ford HT (1960) The isotope effect in the fixation of nitrogen by Azotobacter. J Am Chem Soc 82:376–378.

    Article  CAS  Google Scholar 

  • Hutchinson GE (1957) A treatise on limnology, Volume I—Geography, physics, and chemistry. Wiley, New York.

    Google Scholar 

  • Iswaran V, Sen A, Apte A (1973) Azotobacter chroococcum in the phyllosphere of water hyacinth (Eichhornia crassipes Mort. Solms). Plant Soil 39:461–463.

    Article  Google Scholar 

  • Kling GW, Fry B, O’Brien WJ (1992) Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73:561–566.

    Article  Google Scholar 

  • Klingensmith KM (1981) Sediment nitrification, denitrification, and nitrous oxide production in an arctic lake. M.S. thesis, University of Alaska, Fairbanks.

    Google Scholar 

  • LaPerriere JD (1990) Variations in aggradation lakes of the Tanana Valley: Influence of morphometry and chemistry on phytoplankton photosynthesis. Verh Int Verein Limnol 24:309–313.

    Google Scholar 

  • Likens GE, Johnson PL (1968) A limnological reconnaissance in interior Alaska. Research Report No. 239, CRREL, Hanover, NH.

    Google Scholar 

  • Livingston DA (1963) Alaska, Yukon, Northwest Territories, and Greenland. In Frey DG (Ed) Limnology in north America. University of Wisconsin Press, Madison, WI, 559–574.

    Google Scholar 

  • Mann KH (1988) Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. 1988. Limnol Oceanogr 33:910–930.

    Article  CAS  Google Scholar 

  • Matveev VF, Martinez CC (1990) Can water mites control populations of planktonic Cladocera? Hydrobiologia 198:227–231.

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Step-wise enrichment of 15N along food chains: Further evidence and the relation between 15N and animal age. Geochim Cosmochim Acta 48:1135–1140.

    Article  CAS  Google Scholar 

  • Ohmori M, Hattori A (1972) Effects of nitrate on nitrogen-fixation by the blue-green alga Anabaena cylindrica. Plant Cell Physiol 13:589–599.

    CAS  Google Scholar 

  • Owens NJP (1987) Natural variations in 15N in the marine environment. Adv Mar Biol 24:389–451.

    Article  Google Scholar 

  • Paerl HW (1990) Physiological ecology and regulation of N2 fixation in natural waters. In Marshall KC (Ed) Advances in microbial ecology, Vol 11. Plenum Press, New York, 305–344.

    Chapter  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320.

    Article  Google Scholar 

  • Pritchard G (1964) The prey of dragonfly larvae (Odonata; Anisoptera) in ponds in northern Alberta. Can J Zool 42:785–800.

    Article  Google Scholar 

  • Rau GH (1980) Carbon-13/carbon-12 variation in subalpine lake aquatic insects: Food source implications. Can J Fish Aquat Sci 37:742–745.

    Article  CAS  Google Scholar 

  • Ragotzkie RA (1978) Heat budgets of lakes. In Lerman A (Ed) Lakes: Chemistry, geology, physics. Springer-Verlag, New York, 1–19.

    Google Scholar 

  • Satoh Y, Alexander V, Takahashi E (1992) Dissolved organic carbon (DOC) and some other chemical profiles of various Alaskan lakes in summer. Jpn J Limnol 53:207–216.

    Article  CAS  Google Scholar 

  • Takahashi M, Saijo Y (1988) Nitrogen metabolism in Lake Kizaki, Japan V. The role of nitrogen fixation in nitrogen requirement of phytoplankton. Arch Hydrobiol 112:43–54.

    CAS  Google Scholar 

  • Toetz DW (1974) Uptake and translocation of ammonia by freshwater hydrophytes. Ecology 55:199–201.

    Article  CAS  Google Scholar 

  • Yoshinari T, Hynes R, Knowles R (1977) Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol Biochem 9:177–183.

    Article  CAS  Google Scholar 

  • Zuberer DA (1982) Nitrogen fixation (acetylene reduction) associated with duckweed (Lemnaceae) mats. Appl Environ Microbiol 43:823–828.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alexander, V., Gu, B. (1997). The Limnology of Smith Lake. In: Milner, A.M., Oswood, M.W. (eds) Freshwaters of Alaska. Ecological Studies, vol 119. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0677-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0677-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6866-6

  • Online ISBN: 978-1-4612-0677-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics