Introduction to Besag (1974) Spatial Interaction and the Statistical Analysis of Lattice Systems

  • Richard L. Smith
Part of the Springer Series in Statistics book series (SSS)

Abstract

Julian Besag has made a career of identifying emerging areas of statistics and writing important papers about them, just as they were beginning to attract serious attention. Thus Besag (1986) was the second major paper [after Geman and Geman (1984), featured elsewhere in this volume] on the Markov random fields approach to image analysis, while in the 1990s he made a number of contributions to Markov chain Monte Carlo (MCMC) sampling [e.g., Besag and Green (1993); Besag et al. (1995)]. His first major paper, however, laid out the foundations for statistical inference in lattice systems, and so provided the background for much later work, both his own and that of many others.

Keywords

Transportation Autocorrelation Univer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Barndorff-Nielsen, O.E. and Cox, D.R. (1994). Inference and Asymptotics. Chapman and Hall, London.MATHGoogle Scholar
  2. Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician, 24, 179–195.CrossRefGoogle Scholar
  3. Besag, J. (1977). Efficiency of pseudolikelihood estimation for simple Gaussian field. Biometrika,64, 616–618.MathSciNetMATHCrossRefGoogle Scholar
  4. Besag, J.E. (1986). On the statistical analysis of dirty pictures (with discussion). J. Roy. Statist. Soc. Ser. B, 48, 259–302.MathSciNetMATHGoogle Scholar
  5. Besag, J.E. and Green, P.J. (1993). Spatial statistics and Bayesian computation. J. Roy. Statist. Soc. Ser. B, 55, 25–37.MathSciNetMATHGoogle Scholar
  6. Besag, J., Green, P.J., Higdon, D., and Mengersen, K. (1995). Bayesian computations and stochastic systems. Statist. Sci.,10, 1–66.MathSciNetGoogle Scholar
  7. Besag, J. and Moran, P.A.P. (1975). On the estimation and testing of spatial interaction in Gaussian lattice processes. Biometrika,62, 555–562.MathSciNetMATHCrossRefGoogle Scholar
  8. Clifford, P. (1990). Markov random fields in statistics. In Disorder in Physical Systems: A Volume in Honour of John M. Hammersley (G.R. Grimmett and D.J.A. Welsh, eds.). Oxford University Press, Oxford.Google Scholar
  9. Comets, F. (1992). On consistency of a class of estimators for exponential families of Markov random fields on a lattice. Ann. Statist., 20, 455–468.MathSciNetMATHCrossRefGoogle Scholar
  10. Cox, D.R. and Wermuth, N. (1994). A note on the quadratic exponential binary distribution. Biometrika,81, 403–408.MathSciNetMATHCrossRefGoogle Scholar
  11. Cressie, N. (1993). Statistics for Spatial Data, 2nd ed. Wiley, New York.Google Scholar
  12. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intelligence, 6, 721–741.MATHCrossRefGoogle Scholar
  13. Geyer, C.J. and Thompson, E.A. (1992). Constrained Monte Carlo maximum likelihood for dependent data (with discussion). J. Roy. Statist. Soc. Ser. B, 54, 657–699.MathSciNetGoogle Scholar
  14. Ji, C. and Seymour, L. (1996), A consistent model selection procedure for Markov random fields based on the pseudolikelihood. Ann. Appt. Probab., 6, 423–443.MathSciNetMATHCrossRefGoogle Scholar
  15. Penttinen, A. (1984). Modelling interaction in spatial point patterns: parametric estimation by the maximum likelihood method. J. Stud. Comput. Sci. Econ. Statist., 7.Google Scholar
  16. Swendsen, R.H. and Wang, J.-S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett., 58, 86–88.CrossRefGoogle Scholar
  17. Winkler, G. (1995). Image Analysis, Random Fields and Dynamic Monte Carlo Analysis: A Mathematical Introduction. Springer-Verlag, Berlin.MATHGoogle Scholar

References

  1. Averintsev, M.B. (1970). On a method of describing complete parameter fields. Problemy Peredachi Informatsii, 6, 100–109.Google Scholar
  2. Bartlett, M.S. (1955). An Introduction to Stochastic Processes. Cambridge University Press, Cambridge.MATHGoogle Scholar
  3. Bartlett, M.S. (1967). Inference and stochastic processes. J. Roy. Statist. Soc. Ser. A. 130, 457–477.CrossRefGoogle Scholar
  4. Bartlett, M.S. (1968). A further note on nearest neighbour models. J. Roy. Statist. Soc. Ser. A,131. 579–580.CrossRefGoogle Scholar
  5. Bartlett, M.S. (1971a). Physical nearest-neighbour models and non-linear time series. J. Appl. Probab., 8,222–232.MathSciNetMATHCrossRefGoogle Scholar
  6. Bartlett, M.S. (1971b). Two-dimensional nearest-neighbour systems and their ecological applications. Statist. Ecology Ser.,vol. 1,pp. 179–194. Pennsylvania State University Press.Google Scholar
  7. Bartlett, M.S. (1974). The statistical analysis of spatial pattern. Presented at the Third Conference on Stochastic Processes and their Applications, Sheffield, August 1973.Google Scholar
  8. Bartlett, M.S. and Besag, J.E. (1969). Correlation properties of some nearestneighbour models. Bull. Internat. Statist. Inst., 43, Book 2, 191–193.Google Scholar
  9. Batchelor, L.D. and Reed, H.S. (1918). Relation of the variability of yields of fruit trees to the accuracy of field trials. J. Agrtc. Res., 12, 245–283.Google Scholar
  10. Besag, J.E. (1972a). Nearest-neighbour systems and the auto-logistic model for binary data. J. Roy. Statist. Soc. Ser. B, 34, 75–83.MathSciNetMATHGoogle Scholar
  11. Besag, J.E. (1972b). On the correlation structure of some two-dimensional stationary processes. Biometrika,59, 43–48.MathSciNetMATHCrossRefGoogle Scholar
  12. Besag, J.E. (1972c). On the statistical analysis of nearest-neighbour systems. Proceedings of the European Meeting of Statisticians. Budapest, August 1972 (to appear).Google Scholar
  13. Brook, D. (1964). On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems. Biometrika, 51, 481–483.MathSciNetMATHGoogle Scholar
  14. Brown, G.S. (1965). Point density in stems per acre. New Zealand. For. Serv. Res., Note 38, 1–11.Google Scholar
  15. Clarke, R.D. (1946). An application of the Poisson distribution. J. Inst. Actuar., 72, 481.Google Scholar
  16. Cochran, W.G. (1936). The statistical analysis of the distribution of field counts of diseased plants. J. Roy. Statist. Soc. Supp1,3, 49–67.MATHCrossRefGoogle Scholar
  17. Cox, D.R. (1970). Analysis of Binary Data. Methuen, London.MATHGoogle Scholar
  18. Cox, D.R. (1972). The analysis of multivariate binary data. Appl. Statist., 21, 113–120.CrossRefGoogle Scholar
  19. Feller, W. (1957). An Introduction to Probability Theory and its Applications,Vol. 1. Wiley, New York.MATHGoogle Scholar
  20. Freeman, G.H. (1953). Spread of disease in a rectangular plantation with vacancies. Biometrika,40, 287–305.MATHGoogle Scholar
  21. Gleaves, J.T. (1973). Unpublished Ph.D. Thesis, University of Liverpool.Google Scholar
  22. Greig-Smith, P. (1964). Quantitative Plant Ecology, 2nd ed. Butterworth, London.Google Scholar
  23. Grimmett, G.R. (1973). A theorem about random fields. Bull. London Math. Soc., 5, 81–84.MathSciNetMATHCrossRefGoogle Scholar
  24. Hammersley, J.M. and Clifford, P. (1971). Markov fields on finite graphs and lattices (unpublished).Google Scholar
  25. Hannan, E.J. (1955a). Exact tests for serial correlation. Biometrika,42, 133–142.MathSciNetMATHGoogle Scholar
  26. Hannan, E.J. (1955b). An exact test for correlation between time series. Biometrika, 42, 316–326.MathSciNetMATHGoogle Scholar
  27. Kendall, M.G. and Stuart, A. (1961). The Advanced Theory of Statistics, Vol. 2. Griffin, London.Google Scholar
  28. Levy, P. (1948). Chaines doubles de Markoff et fonctions aléatoires de deux variables. C.R. Acad. Sci. Paris, 226, 53–55.MathSciNetMATHGoogle Scholar
  29. Matui, I. (1968). Statistical study of the distribution of scattered villages in two regions of the Tonami plain, Toyami prefecture. In Spatial Analysis (Berry, B.J. and Marble, D.F., eds.). Prentice-Hall, Engelwood Cliffs, N.J.Google Scholar
  30. Mead, R. (1966). A relationship between individual plant spacing and yield. Ann. Bot., 30, 301–309.Google Scholar
  31. Mead, R. (1967). A mathematical model for the estimation of interplant competition. Biometrics,23, 189–205.CrossRefGoogle Scholar
  32. Mead, R. (1968). Measurement of competition between individual plants in a population. J. Ecol., 56, 35–45.CrossRefGoogle Scholar
  33. Mead, R. (1971). Models for interplant competition in irregularly distributed populations. In Statistical Ecology, Vol. 2, pp. 13–32. Pennsylvania State University Press.Google Scholar
  34. Mercer, W.B. and Hall, A.D. (1911). The experimental error of field trials. J. Agric. Sci., 4, 107–132.CrossRefGoogle Scholar
  35. Moran, P.A.P. (1973a). A Gaussian Markovian process on a square lattice. J. Appt. Probab., 10, 54–62.MATHCrossRefGoogle Scholar
  36. Moran, P.A.P. (1973b). Necessary conditions for Markovian processes on a lattice. I Appl. Probab., 10, 605–612.MATHCrossRefGoogle Scholar
  37. Ogawara, M. (1951). A note on the test of serial correlation coefficients. Ann. Math. Statist., 22, 115–118.MathSciNetMATHCrossRefGoogle Scholar
  38. Ord, J.K. (1974). Estimation methods for models of spatial interaction. J. Amer. Statist. Assoc. (to appear).Google Scholar
  39. O’Sullivan, P.M. (1969). Transportation Networks and the Irish Economy. L.S.E. Geographical Papers No. 4. Weidenfeld and Nicholson, London.Google Scholar
  40. Patankar, V.N. (1954). The goodness of fit of frequency distributions obtained from stochastic processes. Biometrika, 41, 450–462.MathSciNetMATHGoogle Scholar
  41. Plackett, R.L. (1960). Principles of Regression Analysis. Clarendon Press, Oxford.MATHGoogle Scholar
  42. Preston, C.J. (1973). Generalised Gibbs states and Markov random fields. Adv. Appl. Probab., 5, 242–261.MathSciNetMATHCrossRefGoogle Scholar
  43. Rosanov, Yu.A. (1967). On the Gaussian homogeneous fields with given conditional distributions. Theor. Probab. Appl., 12, 381–391.CrossRefGoogle Scholar
  44. Rota, G.C. (1964). On the foundations of combinatorial theory. Z. Wahrsch. Verw. Gebcete, 2, 340–368.MathSciNetMATHCrossRefGoogle Scholar
  45. Sherman, S. (1973). Markov random fields and Gibbs random fields. Israel J. Math., 14, 92–103.MathSciNetMATHCrossRefGoogle Scholar
  46. Spitzer, F. (1971). Markov random fields and Gibbs ensembles. Amer. Math. Monthly, 78, 142–154.MathSciNetMATHCrossRefGoogle Scholar
  47. Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41, 434–449.MathSciNetMATHGoogle Scholar
  48. Whittle, P. (1963). Stochastic processes in several dimensions. Bull. Internat. Statist. Inst., 40, 974–994.MathSciNetGoogle Scholar
  49. Williams, R.M. (1952). Experimental designs for serially correlated observations. Biometrika, 39, 151–167.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Richard L. Smith
    • 1
  1. 1.University of North CarolinaUSA

Personalised recommendations