Skip to main content

Theories and Techniques of Initiation

  • Chapter
Explosive Effects and Applications

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

  • 1415 Accesses

Abstract

This chapter outlines the elementary theories of thermal and shock initiation of explosives and some generic initiation techniques for weapon systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, A. and Murray, S.G. (1989).Explosives Propellants and Pyrotechnics. Brassey, London.

    Google Scholar 

  • Becker, R. (1921).Z. Phys. 4393.

    Article  ADS  Google Scholar 

  • Boggs, T.L. and Derr, R.L. (1990).Hazard Studies for Solid Propellant Rocket Motors. AGARDograph No. 316 AGARD-AG-316, NATO.

    Google Scholar 

  • Bridgeman, P.W. (1947).J. Chem. Phys. 15311.

    Article  ADS  Google Scholar 

  • Cachia, G.P. and Whitbread, E.G. (1958).Proc. Roy. Soc. London Ser. A 246286.

    Google Scholar 

  • Campbell, A.W., Davis, W.C., and Travis, J.R. (1961).Phys. Fluids 4288.

    Google Scholar 

  • Campbell, A.W., Davis, W.C., Ramsay, J.B., and Travis, J.R. (1961).Phys. Fluids 4511.

    Article  ADS  Google Scholar 

  • Chapman, D.L. (1899). On the rate of explosion in gases.Phil. Mag. 4790.

    Article  MATH  Google Scholar 

  • Cook, M.A., Pack, D.H., Cosner, L.N., and Gey, W.A. (1959).J. Appl. Phys. 301579.

    Article  ADS  Google Scholar 

  • Cowan, R.D. and Fickett, W. (1956).J. Chem. Phys. 24932.

    Article  ADS  Google Scholar 

  • Döring, W. (1943).Ann. Physik 43421.

    Article  Google Scholar 

  • Döring, W. and Burkhardt, G.I. Technical Report No. F-TS-1227–1A (GDAM A9-T-46).

    Google Scholar 

  • Duff, R.E. and Houston, E. (1955).ibid. 231268.

    Google Scholar 

  • Field, J.E., Swallow, G.M., and Heavens, S.N. (1982).Proc. Roy. Soc. London Ser. A 382231.

    Article  ADS  Google Scholar 

  • Frank-Kamenetskii, D.A. (1955).Diffusion and Heat Exchange in Chemical Kinetics. Translated by N. Thon. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Frank-Kamenetskii, D.A. (1938).Dokl. Nauk SSSR 18413.

    Google Scholar 

  • Frank-Kamenetskii, D.A. (1939).Acta Physicochim. URSS 10365.

    Google Scholar 

  • Frank-Kamenetskii, D.A. (1942).ibid. 16357.

    Google Scholar 

  • van’t Hoff, J.H. (1884).Etudes de Dynamique Chimique. Amsterdam, p. 161.

    Google Scholar 

  • Gray, P. and Harper, M.J. (1959).Trans. Faraday Soc. 55581.

    Article  Google Scholar 

  • Gray, P. and Harper, M.J. (1959).Seventh International Symposium on Combustion. Butterworth, London, p. 425.

    Google Scholar 

  • Gray, P. and Harper, M.J. (1960). Reactivity of solids.Proceedings of the Fourth Symposium on the Reactivity of Solids. (J.H. de Boer et al., eds.). Elsevier, Amsterdam, p. 283.

    Google Scholar 

  • Gray, P. and Lee, P.R. (1967). Thermal explosion theory. InOxidation and Combustion Reviews(C.F.H. Tipper, ed.). Elsevier, Amsterdam21.

    Google Scholar 

  • Groocock, J.M. (1958).Trans. Faraday Soc. 541526.

    Article  Google Scholar 

  • Heavens, S.N. (1976). D.Ph. Thesis. Cavendish Laboratory, University of Cambridge.

    Google Scholar 

  • Heavens, S.N. and Field, J.E. (1974).Proc. Roy. Soc. London Ser. A 33877.

    Article  ADS  Google Scholar 

  • Hertzberg, G. and Walker, R. (1948).Nature 161647.

    Article  ADS  Google Scholar 

  • Hubbard, A.W. and Johnson, M.H. (1959).J. Appl. Phys. 30765.

    Article  ADS  Google Scholar 

  • Jacobs, S.J. (1960).ARS 1151.

    Google Scholar 

  • Jacobson, A.K. (1981). Low energy flying plate detonator. Sandia National Labo ratories Report, Sandia, Albuquerque, NM. Report Number SAND-81–0487.

    Google Scholar 

  • Jacobson, A.K. (1981).11th Symposium on Explosives and Pyrotechnics. Franklin Institute, Franklin, Philadelphia, PA.

    Google Scholar 

  • Jones, H. (1949).Third Symposium on Combustionp. 590.

    Google Scholar 

  • Jouguet, E. (1906). On the propagation of chemical reactions in gases.J. Math. Pures Appl. 1347 and25.

    Google Scholar 

  • Kistiakowsky, G.B. and Wilson, E.B. (1941). Report on the prediction of the detonation velocities of solid explosives. US Office of Scientific Research and Development Report, OSRD-69.

    Google Scholar 

  • Kistiakowsky, G.B. and Wilson, E.B. (1941). Hydrodynamic theory of detonation and shock waves. US Office of Scientific Research and Development Report, OSRD Report OSRD-114.

    Google Scholar 

  • Kistiakowsky, G.B. and Kydd, P.H. (1954).J. Chem. Phys. 221940.

    Google Scholar 

  • Lee, P.R. (1992).Fourth International Symposium on Explosives Technology and Ballistics. Pretoria, RSA, National Institute for Explosives Technology, p. 99.

    Google Scholar 

  • Lieberman, M.L., Fleming, N.A., and Begeal, D.R. (1984). CPDDTDetonators III: Powder column effects. Sandia National Laboratories Report, Sandia, Albuquerque, NM. Report Number SAND-84–0143C.

    Google Scholar 

  • Lieberman, M.L., Fleming, N.A., and Begeal, D.R. (1984). 9thInternational Pyrotechnics Seminar IIT Research InstituteColorado Springs, CO.

    Google Scholar 

  • Mader, C.L. (1963).Phys. Fluids 6375.

    Article  ADS  Google Scholar 

  • Mader, C.L. (1979).Numerical Modeling of Detonations. University of California Press, Berkeley, CA.

    MATH  Google Scholar 

  • Merzhanov, A.G., Abramov, V.G., and Dubovitskii, F.I. (1959).Dokl. Akad. Nauk SSSR 128889.

    Google Scholar 

  • Merzhanov, A.G. and Dubovitskii, F.I. (1960).Russian J. Phys. Chem. 341062.

    Google Scholar 

  • Merzhanov, A.G., Barzykin, V.V., Abramov, V.G., and Dubovitskii, F.I. (1961).Russian J. Phys. Chem. 351024.

    Google Scholar 

  • Merzhanov, A.G., Abramov, V.G., and Gontkovskaya, V.T. (1963).Dokl. Akad. Nauk SSSR 148156.

    Google Scholar 

  • Merzhanov, A.G. and Abramov, V.G. (1981).Propellants Explosives and Pyrotechnics 6130.

    Article  Google Scholar 

  • von Neumann, J. (1942). Office of Scientific Research and Development. OSRD Report 541.

    Google Scholar 

  • von Neumann, J. (1990).Collected Works(1952–1963), vol. 16, p. 203. Pergamon Press, Oxford. Ordnance Board: Insensitive Munitions: Pillar Proceeding 42657.

    Google Scholar 

  • Semenov, N.N. (1928).Z. Phys. 48571.

    Article  ADS  Google Scholar 

  • Semenov, N.N. (1930).Z. Phys. Chem. 11B464.

    Google Scholar 

  • Semenov, N.N. (1932).Phys. Z. Sowjet. 1607.

    Google Scholar 

  • Semenov, N.N. (1955).Chemical Kinetics and Chain Reactions. Clarendon Press, Oxford.

    Google Scholar 

  • Simchen, A.E. (1964).Israel J. Chem. 233.

    Google Scholar 

  • Skidmore, I.C. and Hart, S. (1965).Fourth Symposium on Detonationp. 1.

    Google Scholar 

  • Taylor, G.I. (1950).Proc. Roy. Soc. London Ser. A 200235.

    Article  ADS  MATH  Google Scholar 

  • Thomas, P.H. (1958).Trans. Faraday Soc. 5460.

    Article  Google Scholar 

  • US Military Standard: Hazard Assessment Tests for Non-nuclear Munitions, (1994). DoD-STD-2105B (Navy).

    Google Scholar 

  • Wake, G.C. and Walker, I.K. (1964).New Zealand J. Sci. 7227.

    Google Scholar 

  • Walker, I.K. (1961).ibid. 4309.

    Google Scholar 

  • Walker, I.K. and Harrison, W.J. (1960).J. Appl. Chem. 10266.

    Article  Google Scholar 

  • Walker, I.K. and Harrison, W.J. (1965).New Zealand J. Sci. 8106.

    Google Scholar 

  • Zeldovich, Ya.B. (1940).J. Exptl. Theoret. Phys. USSR 10542.

    Google Scholar 

  • Zeldovich, Ya.B. (1950). NACA Tech. Memo, p. 1261.

    Google Scholar 

  • Zeller, B. (1993). Solid propellant grain design. InSolid Rocket Propellant Technology(Davenas, A., ed.). Pergamon Press, Oxford.

    Google Scholar 

  • Zinn, J. and Mader, C.L. (1960).J. Appl. Phys. 31323.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, P.R. (1998). Theories and Techniques of Initiation. In: Zukas, J.A., Walters, W.P. (eds) Explosive Effects and Applications. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0589-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0589-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95558-2

  • Online ISBN: 978-1-4612-0589-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics