Skip to main content

Development of the Insect Auditory System

  • Chapter
Comparative Hearing: Insects

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 10))

Abstract

The insect auditory system is the product of two historical processes. The first is the evolutionary history of the species, evident in the pattern of gene expression that directs neurogenesis, growth, and connectivity. The second is the developmental history of the individual animal in which differential gene expression, environmental interactions, and processes such as activity-dependent competition between neurons for synaptic sites all combine to produce interindividual variation in neuronal structure and function. Over the past decade there have been impressive advances in our understanding of the cellular and molecular mechanisms of some of these developmental processes (for reviews, Campos-Ortega and Knust 1990; Grenningloh et al. 1990; Goodman and Doe 1994). Furthermore, our ability to determine a neuron’s lineage from an identified precursor cell in the early embryo means that the basic organization of the insect auditory system can now be understood ontogenetically and is one of the reasons why this system is being studied by developmental neurobiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams TW, Pearson KG (1982) Effects of temperature on identified central neurons that control jumping in the grasshopper. J Neurosci 2:1538–1553.

    PubMed  CAS  Google Scholar 

  • Alexander RD (1967) Acoustical communication in arthropods. Ann Rev Entomol 12:495–526.

    Google Scholar 

  • Atkins G, Henley J, Stout J (1990) A neural correlate for control of syllable period selective phonotaxis in the cricket Acheta domestica by juvenile hormone III. Soc Neurosci Abstr 20:758.

    Google Scholar 

  • Bacon JP, Blagburn JM (1992) Ectopic sensory neurons in mutant cockroaches compete with normal cells for central targets. Development 115:773–784.

    PubMed  CAS  Google Scholar 

  • Bacon JP, Murphey RK (1984) Receptive fields of cricket (Acheta domesticus) interneurones are related to their dendritic structure. J Physiol (Lond) 352:601–623.

    CAS  Google Scholar 

  • Ball EE (1979) Development of the auditory tympana in the cricket Teleogryllus commodus (Walker): experiments on regeneration and transplantation. Experientia 35:324–325.

    Google Scholar 

  • Ball EE, Hill KG (1978) Functional development of the auditory system of the cricket, Teleogryllus commodus. J Comp Physiol A 127:131–138.

    Google Scholar 

  • Ball E, Young D (1974) Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus (Walker). H. Postembryonic development. Z Zellforsch 147:313–324.

    PubMed  CAS  Google Scholar 

  • Ball EE, Oldfield BP, Rudolph KM (1989) Auditory organ structure, development, and function. In: Huber F, Moore TE, Loher W (eds) Cricket Behavior and Neurobiology. Ithaca, NY: Cornell University Press, pp. 391–422.

    Google Scholar 

  • Ball EE, Rehm EJ, Patel NH, Goodman CS (1991) Evolution of insect segmentation and homeotic genes and their function during neurogenesis. Soc Neurosci Abstr 17:11.

    Google Scholar 

  • Bastiani MJ, Goodman CS (1986) Guidance of neuronal growth cones in the grasshopper embryo. III. Recognition of specific glial pathways. J Neurosci 6:3541–3551.

    Google Scholar 

  • Bastiani M, Pearson KG, Goodman CS (1984) From embryonic fascicles to adult tracts: organization of neuropile from a developmental perspective. J Exp Biol 112:45–64.

    PubMed  CAS  Google Scholar 

  • Bastiani MJ, Raper JA, Goodman CS (1984) Pathfinding by neuronal growth cones in grasshopper embryos. III. Selective affinity of the G growth cone for the P cells within the A/P fascicle. J Neurosci 4:2311–2328.

    PubMed  CAS  Google Scholar 

  • Bastiani MJ, Harrelson AL, Snow PM, Goodman CS (1987) Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell 48:745–755.

    PubMed  CAS  Google Scholar 

  • Bate CM (1976) Embryogenesis of an insect nervous system. I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J Embryol Exp Morphol 35:107–123.

    PubMed  CAS  Google Scholar 

  • Bentley D, Caudy M (1983) Pioneer axons lose directed growth after selected killing of guidepost cells. Nature 304:62–65.

    PubMed  CAS  Google Scholar 

  • Bentley D, Keshishian H (1982) Pathfinding by peripheral pioneer neurons in grasshoppers. Science 218:1082–1088.

    PubMed  CAS  Google Scholar 

  • Bentley D, Keshishian H, Shankland M, Toroian-Raymond A (1979) Quantitative staging of embryonic development of the grasshopper Schistocerca nitens. J Embryol Exp Morphol 54:47–74.

    PubMed  CAS  Google Scholar 

  • Biggin RJ (1981) Pattern re-establishment ¡ª transplantation and regeneration of the leg in the cricket Teleogryllus commodus (Walker). J Embryol Exp Morphol 61:87–101.

    PubMed  CAS  Google Scholar 

  • Blagburn JM (1989) Synaptic specificity in the first instar cockroach: patterns of monosynaptic input from filiform hair afferents to giant interneurons. J Comp Physiol A 166:133–142.

    PubMed  CAS  Google Scholar 

  • Bodmer R, Jan YN (1987) Morphological differentiation of the embryonic peripheral neurons in Drosophila. Roux’s Arch Dev Biol 196:69–77.

    Google Scholar 

  • Boyan GS (1983) Postembryonic development in the auditory system of the locust. Anatomical and physiological characterization of interneurones ascending to the brain. J Comp Physiol 151:449–513.

    Google Scholar 

  • Boyan GS (1984) Neural mechanisms of information processing by identified interneurones in Orthoptera. J Insect Physiol 30:27–41.

    Google Scholar 

  • Boyan GS (1986) Modulation of auditory responsiveness in the locust. J Comp Physiol A 158:813–825.

    PubMed  CAS  Google Scholar 

  • Boyan GS (1992) Common synaptic drive to segmentally homologous interneurons in the locust. J Comp Neurol 321:544–554.

    PubMed  CAS  Google Scholar 

  • Boyan GS (1993) Another look at insect audition: the tympanic receptors as an evolutionary specialization of the chordotonal system. J Insect Physiol 39:187–200.

    Google Scholar 

  • Boyan GS, Ball EE (1993) The grasshopper, Drosophila, and neuronal homology. Prog Neurobiol 41:657–682.

    PubMed  CAS  Google Scholar 

  • Boyan GS, Willams JLD (1995) Lineage analysis as an analytical tool in the insect central nervous system: bringing order to interneurons. In: Breidbach O, Kutsch W (eds) The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Basel: Birkhäuser Verlag, pp. 273–301.

    Google Scholar 

  • Boyan GS, Therianos S, Williams JLD, Reichert H (1995) Axogenesis in the embryonic brain of the grasshopper Schistocerca gregaria. An identified cell analysis of early brain development. Development 121:75–86.

    PubMed  CAS  Google Scholar 

  • Brodfuehrer PD, Hoy RR (1988) Effect of auditory deprivation on the synaptic connectivity of a pair of identified interneurons in adult field crickets. J Neurobiol 19:17–38.

    PubMed  CAS  Google Scholar 

  • Campos-Ortega JA, Knust E (1990) Genetic mechanisms in early neurogenesis of Drosophila melanogaster. Ann Rev Genet 24:387–407.

    PubMed  CAS  Google Scholar 

  • Carney PR, Silver J (1983) Studies on cell migration and axon guidance in the developing distal auditory system of the mouse. J Comp Neurol 215:359–369.

    PubMed  CAS  Google Scholar 

  • Chiba A, Shepherd D, Murphey RK (1988) Synaptic rearrangement during postembryonic development in the cricket. Science 240:901–905.

    PubMed  CAS  Google Scholar 

  • Cokl A, Kalmring K, Wittig H (1977) The responses of auditory ventral cord neurons of Locusta migratoria to vibration stimuli. J Comp Physiol A 120:161–172.

    Google Scholar 

  • Corwin JT (1983) Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: continual increases in hair cell number, neural convergence, and physiological sensitivity. J Comp Neurol 217:345–356.

    PubMed  CAS  Google Scholar 

  • Corwin JT, Cotanche DA (1989) Development of location-specific hair cell stereocilia in denervated embryonic ears. J Comp Neurol 288:529–537.

    PubMed  CAS  Google Scholar 

  • Dambly-Chaudiere C, Jamet E, Burri M, Bopp D, Basler K, Hafen E, Dumont N, Spielmann P, Ghysen A, Noll M (1992) The paired box gene pox-neuro ¡ª; a determinant of poly-innervated sense organs in Drosophila. Cell 69:159–172.

    PubMed  CAS  Google Scholar 

  • Davis GW, Murphey RK (1994) Long-term regulation of short-term transmitter release properties: retrograde signalling and synaptic development. Trends Neurosci 17:9–13.

    PubMed  CAS  Google Scholar 

  • Doe CQ (1992) Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development 116:855–863.

    PubMed  CAS  Google Scholar 

  • Doe CO, Goodman CS (1985) Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. Dev Biol 111:193–205.

    PubMed  CAS  Google Scholar 

  • Doe CO, Chu-LaGraff Q, Wright DM, Scott MP (1991) The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65:451–464.

    PubMed  CAS  Google Scholar 

  • Ebendt R, Friedel J, Kalmring K (1994) Central projection of auditory receptors in the prothoracic ganglion of the bushcricket Psorodonotus illyricus (Tettigoniidae): computer-aided analysis of the end branch pattern. J Neurobiol 25:35–49.

    PubMed  CAS  Google Scholar 

  • Feng JZ, Brugge JF (1983) Postnatal development of auditory callosal connections in the kitten. J Comp Neurol 214:416–426.

    Google Scholar 

  • Gabriel JM (1985) The development of the locust jumping mechanism. I. Allometric growth and its effect on jumping performance. J Exp Biol 118:313–326.

    Google Scholar 

  • Gilbert S (1991) Developmental Biology. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Goodman CS, Doe CQ (1994) Embryonic development of the Drosophila central nervous system. In: Bate M, Martinez-Arias A (eds) The Development of Drosophila, Vol. I. Cold Spring Harbor, NY: Cold Spring Harbor Press, pp. 1131–1206.

    Google Scholar 

  • Gray EG (1960) The fine structure of the insect ear. Philos Trans R Soc Lond B 243:75–94.

    Google Scholar 

  • Grenningloh G, Bieber AJ, Rehm EJ, Snow PM, Traquina ZR, Hortsch M, Patel NH, Goodman CS (1990) Molecular genetics of neuronal recognition in Drosophila: evolution and function of immunoglobulin superfamily cell adhesion molecules. Cold Spring Harbor Symp Quant Biol 50:327–340.

    Google Scholar 

  • Halex H, Kaiser W, Kalmring K (1988) Projection areas and branching patterns of the tympanal receptor cells in migratory locusts, Locusta migratoria and Schistocerca gregaria. Cell Tissue Res 253:517–528.

    PubMed  CAS  Google Scholar 

  • Harris DM, Dallos P (1984) Ontogenetic changes in frequency mapping of a mammalian ear. Science 225:741–743.

    PubMed  CAS  Google Scholar 

  • Ho RK, Goodman CS (1982) Peripheral pathways are pioneered by an array of central and peripheral neurons in grasshopper embryos. Nature 297:404–406.

    PubMed  CAS  Google Scholar 

  • Holland P, Ingham P, Krauss S (1992) Mice and flies head to head. Nature 358:627–628.

    PubMed  CAS  Google Scholar 

  • Hoy RR, Nolen TG, Casaday GC (1985) Dendritic sprouting and compensatory synaptogenesis in an identified interneuron follow auditory deprivation in a cricket. Proc Natl Acad Sci USA 82:7772–7776.

    PubMed  CAS  Google Scholar 

  • Huangfu M, Saunders JC (1983) Auditory development in the mouse: structural maturation of the middle ear. J Morphol 176:249–259.

    PubMed  CAS  Google Scholar 

  • Huber F (1987) Plasticity in the auditory system of crickets: phonotaxis with one ear and neuronal reorganization within the auditory pathway. J Comp Physiol A 161:583–604.

    Google Scholar 

  • Huber F, Kleindienst HU, Weber T, Thorson J (1984) Auditory behavior of the cricket. III. Tracking of male calling song by surgically and developmentally one-eared females, and the curious role of the anterior tympanum. J Comp Physiol A 155:725–738.

    Google Scholar 

  • Hustert R (1975) Neuromuscular coordination and proprioceptive control of rhythmical abdominal ventilation in intact Locusta migratoria migratorioides. J Comp Physiol A 97:159–179.

    Google Scholar 

  • Hustert R (1978) Segmental and interganglionic projections from primary fibres of insect mechanoreceptors. Cell Tissue Res 194:337–351.

    PubMed  CAS  Google Scholar 

  • Klose M (1991) Aspekte der Entwicklung des peripheren sensorischen Nervensystems in den Beinanlagen von Grillen and Heuschrecken. Doctoral Thesis, Ludwig-Maximilians-Universität, MĂĽnchen.

    Google Scholar 

  • Klose M, Bentley D (1989) Transient pioneer neurons are essential for formation of an embryonic peripheral nerve. Science 245:982–984.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1985) Experience alters the spatial tuning of auditory units in the optic tectum during a sensitive period in the barn owl. J Neurosci 5:3094–3109.

    PubMed  CAS  Google Scholar 

  • KĂĽhne R, Lewis B, Kalmring K (1980) The responses of ventral cord neurons of Decticus verrucivorus (L) to sound and vibration stimuli. Behav Proc 5:55–74.

    Google Scholar 

  • Lakes R, Kalmring K (1991) Regeneration of the projection and synaptic connections of tympanic receptor fibers of Locusta migratoria (Orthoptera) after axotomy. J Neurobiol 22:169–181.

    PubMed  CAS  Google Scholar 

  • Lakes R, Kalmring K, Engelhard KH (1990) Changes in the auditory system of locusts (Locusta migratoria and Schistocerca gregaria) after deafferentation. J Comp Physiol A 166:553–563.

    Google Scholar 

  • Lawrence PA (1993) The Making of a Fly. Oxford: Blackwell Science Ltd.

    Google Scholar 

  • Leise EM (1990) Modular construction of nervous systems: a basic principle of design for invertebrates and vertebrates. Brain Res Rev 15:1–23.

    PubMed  CAS  Google Scholar 

  • Lippe WR (1987) Shift of tonotopic organization in brain stem auditory nuclei of the chicken during late embryonic development. Hear Res 25:205–208.

    PubMed  CAS  Google Scholar 

  • Lnenicka GA, Murphey RK (1989) The refinement of invertebrate synapses during development. J Neurobiol 20:339–355.

    PubMed  CAS  Google Scholar 

  • Mahanthappa NK (1994) Regeneration in the auditory system: lessons from other epithelia, and persisting puzzles. Trends Neurosci 17:357–359.

    PubMed  CAS  Google Scholar 

  • Mason JB (1969) The tympanal organ of Acridomorpha. Eos 44:267–355.

    Google Scholar 

  • Matsumoto SG, Murphey RK (1978) Sensory deprivation in the cricket nervous system: evidence for a critical period. J Physiol (Lond) 285:159–170.

    CAS  Google Scholar 

  • Meier T, Reichert H (1990) Embryonic development and evolutionary origin of the orthopteran auditory system. J Neurobiol 21:592–610.

    PubMed  CAS  Google Scholar 

  • Meier T, Reichert H (1995) Developmental mechanisms, homology and evolution of the insect peripheral nervous system. In: Breidbach O. Kutsch W (eds) The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Basel: Birkhäuser Verlag, pp. 249–271.

    Google Scholar 

  • Meier T, Chabaud F, Reichert H (1991) Homologous patterns in the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria and the fly Drosophila melanogaster. Development 112:241–253.

    PubMed  CAS  Google Scholar 

  • Menne TV, Klämbt C (1994) The formation of commissures in the Drosophila CNS depends on the midline cells and on the Notch gene. Development 120:123–133.

    PubMed  CAS  Google Scholar 

  • Michel K, Petersen M (1982) Development of the tympanal organ in larvae of the migratory locust (Locusta migratoria). Cell Tissue Res 222:667–676.

    PubMed  CAS  Google Scholar 

  • Michelsen A (1971) The physiology of the locust ear. I. Frequency sensitivity of single cells in the isolated ear. Z Vergl Physiol 71:49–62.

    Google Scholar 

  • Murphey RK (1986) Competition and the dynamics of axon arbor growth in the cricket. J Comp Neurol 251:100–110.

    PubMed  CAS  Google Scholar 

  • Murphey RK, Levine RB (1980) Mechanisms responsible for changes observed in response properties of partially deafferented insect interneurons. J Neurophysiol 43:367–382.

    PubMed  CAS  Google Scholar 

  • Murphey RK, Jacklet A, Schuster L (1980) A topographic map of sensory cell terminal arborizations in the cricket CNS: correlation with birthday and position in a sensory array. J Comp Neurol 191:53–64.

    PubMed  CAS  Google Scholar 

  • Oldfield BP (1982) Tonotopic organisation of auditory receptors in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 147:461–469.

    Google Scholar 

  • Oldfield BP (1985) The tuning of auditory receptors in bushcrickets. Hear Res 17:27–35.

    PubMed  CAS  Google Scholar 

  • Pallas SL, Hoy RR (1986) Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus. J Comp Neurol 248:348–359.

    PubMed  CAS  Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968.

    PubMed  CAS  Google Scholar 

  • Pearson KG, Robertson RM (1981) Interneurons coactivating hindleg flexor and extensor motoneurons in the locust. J Comp Physiol A 144:391–400.

    Google Scholar 

  • Pearson KG, Heitler WJ, Steeves JD (1980) Triggering of locust jump by multimodal inhibitory interneurons. J Neurophysiol 43:257–278.

    PubMed  CAS  Google Scholar 

  • Pearson KG, Boyan GS, Bastiani M, Goodman CS (1985) Heterogeneous properties of segmentally homologus interneurones in the ventral cord of locusts. J Comp Neurol 223:133–145.

    Google Scholar 

  • Petersen M, Kalmring K, Cokl A (1982) The auditory system in larvae of the migratory locust. Physiol Entomol 7:43–54.

    Google Scholar 

  • PflĂĽger HJ, Bräunig P, Hustert R (1988) The organization of mechanosensory neuropiles in locust thoracic ganglia. Philos Trans R Soc Lond B 321:1–26.

    Google Scholar 

  • Popper AN, Hoxter B (1984) Growth of a fish ear: I. Quantitative analysis of hair cell and ganglion cell proliferation. Hear Res 15:133–142.

    PubMed  CAS  Google Scholar 

  • Prier KR, Boyan GS (1993) Chordotonal input onto an identified auditory interneuron (714) in the locust, Schistocerca gregaria. Proceedings of the 21st Göttingen Neurobiology Conference, Göttingen, West Germany, June 1993. Stuttgart: Georg Thieme Verlag, p. 223.

    Google Scholar 

  • Purves D, Lichtman JW (1985) Principles of Neural Development. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Queathem E (1991) The ontogeny of grasshopper jumping performance. J Insect Physiol 37:129–138.

    Google Scholar 

  • Raper JA, Bastiani M, Goodman CS (1983a) Pathfinding by neuronal growth cones in grasshopper embryos. I. Divergent choices made by the growth cones of sibling neurons. J Neurosci 3:20–30.

    CAS  Google Scholar 

  • Raper JA, Bastiani M, Goodman CS (1983b) Pathfinding by neuronal growth cones in grasshopper embryos. II. Selective fasciculation onto specific axonal pathways. J Neurosci 3:31–41.

    CAS  Google Scholar 

  • Raper JA, Bastiani MJ, Goodman CS (1984a) Guidance of neuronal growth cones: selective fasciculation in the grasshopper embryo. Cold Spring Harbor Symp Quant Bio 148:587–598.

    Google Scholar 

  • Raper JA, Bastiani MJ, Goodman CS (1984b) Pathfinding by neuronal growth cones in grasshopper embryos. IV. The effects of ablating the A and P axons upon the behavior of the G growth cone. J Neurosci 4:2329–2345.

    CAS  Google Scholar 

  • Reichert H (1990) Neurobiologie. Stuttgart: Thieme Verlag.

    Google Scholar 

  • Riede K, Kämper G, Höfler I (1990) Tympana, auditory thresholds, and projection areas of tympanal nerves in singing and silent grasshoppers (Insecta, Acridoidea). Zoomorphology 109:223–230.

    Google Scholar 

  • Ritzmann RE, Pollack AJ, Hudson SE, Hyvonen A (1991) Convergence of multimodal sensory signals at thoracic interneurons of the escape system of the cockroach, Periplaneta americana. Brain Res 563:175–183.

    PubMed  CAS  Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol A 109:101–122.

    Google Scholar 

  • Römer H (1983) Tonotopic organization of the auditory neuropile in the busch-cricket Tettigonia viridissima. Nature 306:60–62.

    Google Scholar 

  • Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262.

    Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropil in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215.

    PubMed  Google Scholar 

  • Rössler W (1992a) Postembryonic development of the complex tibial organ in the foreleg of the bushcricket Ephippiger ephippiger (Orthoptera, Tettigoniidae). Cell Tissue Res 269:505–514.

    Google Scholar 

  • Rössler W (1992b) Functional morphology and development of tibial organs in the legs I, II and III of the bushcricket Ephippiger ephippiger (Insecta, Ensifera). Zoomorphology 112:181–188.

    Google Scholar 

  • Rubel EW, Dew LA, Roberson DW (1995) Mammalian vestibular hair cell regeneration. Science 267:701–707.

    PubMed  CAS  Google Scholar 

  • Schildberger K, Huber F (1988) Post-lesion plasticity in the auditory system of the cricket. In: Flohr H (ed) Post-lesion Neural Plasticity. Heidelberg: Springer-Verlag, pp. 564–575.

    Google Scholar 

  • Schildberger K, Wohlers DW, Schmitz B, Kleindienst HU, Huber F (1986) Morphological and physiological changes in central auditory neurons following unilateral foreleg amputation in larval crickets. J Comp Physiol 158:291–300.

    Google Scholar 

  • Schumacher R (1973) Morphologische Untersuchungen der tibialen Tympanalorgane von neun einheimsichen Laubheuschrecken-Arten (Orthoptera, Tettigonioidea). Z Morphol Tiere 75:267–282.

    Google Scholar 

  • Shankland M, Goodman CS (1982) Development of the dendritic branching pattern of the medial giant interneuron in the grasshopper embryo. Dev Biol 92:489–506.

    PubMed  CAS  Google Scholar 

  • Shankland M, Bentley D, Goodman CS (1982) Afferent innervation shapes the dendritic branching pattern of the medial giant interneuron in grasshopper embryos raised in culture. Dev Biol 92:507–520.

    PubMed  CAS  Google Scholar 

  • Shepherd D, Murphey RK (1986) Competition regulates the efficacy of an identified synapse in crickets. J Neurosci 6:3152–3160.

    PubMed  CAS  Google Scholar 

  • Shepherd D, Kämper G, Murphey RK (1988) The synaptic origins of receptive field properties in the cricket cereal sensory system. J Comp Physiol A 162:7–11.

    Google Scholar 

  • Shuvalov VF, Popov VA (1971) Reaction of females of the domestic cricket Acheta domesticus to sound signals and its changes in ontogensis. J Evol Biochem Physiol 7:612–616.

    Google Scholar 

  • Siegler MVS, Manley PE Jr., Thompson KJ (1991) Sulphide silver staining for endogenous heavy metals reveals subsets of dorsal unpaired median (DUM) neurones in insects. J Exp Biol 157:565–571.

    CAS  Google Scholar 

  • Silver S, Kalmring K, KĂĽhne R (1980) The responses of central acoustic and vibratory interneurons in bush crickets and locusts to ultrasonic stimulation. Physiol Entomol 5:427–443.

    Google Scholar 

  • Swanson GJ (1988) Regeneration of sensory hair cells in the vertebrate inner ear. Trends Neurosci 11:339–342.

    PubMed  CAS  Google Scholar 

  • Thomas JB, Bastiani MJ, Bate CM, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207.

    PubMed  CAS  Google Scholar 

  • Tyrer NM, Gregory GE (1982) A guide to the anatomy of locust suboesophageal and thoracic ganglia. Philos Trans R Soc Lond B 297:91–123.

    Google Scholar 

  • Uemura T, Shepherd S, Ackerman L, Jan LY, Jan YN (1989) numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58:349–360.

    PubMed  CAS  Google Scholar 

  • Vaessin H, Grell E, Wolff E, Bier E, Jan LY, Jan YN (1991) Prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67:941–953.

    PubMed  CAS  Google Scholar 

  • Whitington PM, Seifert E (1981) Identified neurons in an insect embryo: the pattern of neurons innervating the metathoracic leg of the locust. J Comp Neurol 200: 203–212.

    PubMed  CAS  Google Scholar 

  • Wolf H (1984) Monitoring the activity of an auditory interneuron in a freemoving grasshopper. In: Kalmring K, Elsner N (eds) Acoustic and Vibrational Communication in Insects. Berlin: Paul Parey, pp. 51–60.

    Google Scholar 

  • Yager DD, Hoy RR (1989) Audition in the praying mantis, Mantis religiosa L.: identification of an interneuron mediating ultrasonic hearing. J Comp Physiol A 165:471–493.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boyan, G.S. (1998). Development of the Insect Auditory System. In: Hoy, R.R., Popper, A.N., Fay, R.R. (eds) Comparative Hearing: Insects. Springer Handbook of Auditory Research, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0585-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0585-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6828-4

  • Online ISBN: 978-1-4612-0585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics