Biophysics of Sound Localization in Insects

  • Axel Michelsen
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 10)

Abstract

Humans use two mechanisms for detecting the direction of sound waves, based on diffraction and time of arrival, respectively (Shaw 1974, Yost and Gourevitch 1987, Brown 1994). The presence of the body may disturb the sound wave so that the sound pressure at the surface of the body differs from that in the undisturbed sound wave (diffraction). The sound pressure at a particular position on the surface, for example, the location of an ear, varies with the direction of sound incidence. Diffraction occurs when the dimensions of the body (head) are larger than one-tenth the wavelength of the sound. The sound spectra at the two ears differ for most sound directions if the ears are some distance apart. It is thus possible for the brain to estimate the direction of the sound source by comparing the sound spectra at the two ears. This task is easier with broad-band sounds than with pure tones or narrow-band sounds.

Keywords

Attenuation Rubber Respiration Expense Gall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum H (1940) Über Lautäusserungen and Schallwahrnehmung bei Arthropoden. II. Das Richtungshören von Locusta and Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp. Z Vergl Physiol 28:326–352.CrossRefGoogle Scholar
  2. Batschelet E (1981) Circular Statistics in Biology. London: Academic Press.Google Scholar
  3. Belton P (1974) An analysis of direction finding in male mosquitoes. In: Barton Browne L (ed) Experimental Analysis of Insect Behaviour. Berlin: Springer-Verlag, pp. 139–148.CrossRefGoogle Scholar
  4. Bennet-Clark HC (1971) Acoustics of insect song. Nature 234:255–259.CrossRefGoogle Scholar
  5. Beranek LL (1954) Acoustics. New York: McGraw-Hill (new edition published by the American Institute of Physics 1986).Google Scholar
  6. Brown CH (1994) Sound localization. In: Fay RR, Popper AN (eds) Comparative Hearing: Mammals. New York: Springer-Verlag, pp. 57–96.CrossRefGoogle Scholar
  7. Brownell P, Farley RD (1979) Orientations to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanisms of target localization. J Comp Physiol 131:31–38.CrossRefGoogle Scholar
  8. Ewing AM (1989) Arthropod Bioacoustics: Neurobiology and Behavior. Ithaca, NY: Cornell University Press.Google Scholar
  9. Fletcher NH, Thwaites S (1979) Acoustical analysis of the auditory system of the cricket Teleogryllus commodus (Walker). J Acoust Soc Am 66:350–357.PubMedCrossRefGoogle Scholar
  10. Fonseca PJ, Popov AV (1997) Physical analysis of directional hearing in the cicada Cicada barbara lusitanica. J Comp Physiol A, 180:417–427.CrossRefGoogle Scholar
  11. Helversen D von, Helversen O von (1983) Species Recognition and Acoustic Localization in Acridid Grasshoppers: A Behavioral Approach. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 95–107.CrossRefGoogle Scholar
  12. Helversen D von, Helversen O von (1995) Acoustic pattern recognition in ortho-pteran insects: Parallel or serial processing? J Comp Physiol A 177:767–774.CrossRefGoogle Scholar
  13. Helversen D von, Rheinlaender J (1988) Interaural intensity and time discrimination in an unrestrained grasshopper: a tentative behavioral approach. J Comp Physiol A 162:333–340.CrossRefGoogle Scholar
  14. Hergenröder R, Barth FG (1983) Vibratory signals and spider behaviour: how do the sensory inputs from the eight legs interact in orientation? J Comp Physiol A 152:361–371.CrossRefGoogle Scholar
  15. Hill KG (1974) Carrier frequency as a factor in phonotactic behaviour of female crickets Teleogryllus commodus. J Comp Physiol 93:7–18.CrossRefGoogle Scholar
  16. Hill KG, Boyan GS (1976) Directional hearing in crickets. Nature 262:390–391.PubMedCrossRefGoogle Scholar
  17. Hoy RR, Paul RC (1973) Genetic control of song specificity in crickets. Science 180:82–83.PubMedCrossRefGoogle Scholar
  18. Johnston C (1855) Auditory apparatus of the Culex mosquito. Q J Microsc Sci 3:97–102.Google Scholar
  19. Kramer E (1976) The orientation of walking honeybees in odour fields with small concentration gradients. Physiol Entomol 1:27–37.CrossRefGoogle Scholar
  20. Larsen ON (1981) Mechanical time resolution in some insect ears. II. Impulse sound transmission in acoustic tracheal tubes. J Comp Physiol 143:297–304.CrossRefGoogle Scholar
  21. Larsen ON (1995) Acoustic equipment and sound field calibration. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in Comparative Psychoacoustics. Basel: Birkhäuser Verlag, pp. 31–45.Google Scholar
  22. Larsen ON, Michelsen A (1978) Biophysics of the Ensiferan ear. III. The cricket ear as a four-input system. J Comp Physiol 123:219–227.CrossRefGoogle Scholar
  23. Lewis B (1983) Directional cues for auditory localization. In: Lewis B (ed). Bioa-coustics, a Comparative Approach. London: Academic Press, pp. 233–257.Google Scholar
  24. Michel K (1974) Das Tympanalorgan von Gryllus bimaculatus Degeer (Saltatoria, Gryllidae). Z Morph Tiere 77:285–315.CrossRefGoogle Scholar
  25. Michelsen A (1971) The physiology of the locust ear. Z Vergl Physiol 71:49–128.CrossRefGoogle Scholar
  26. Michelsen A (1978) Sound reception in different environments. In: Ali MA (ed) Sensory Ecology. New York: Plenum Press, pp. 345–373.CrossRefGoogle Scholar
  27. Michelsen A (1983) Biophysical basis of sound communication. In: Lewis B (ed) Bioacoustics. London: Academic Press, pp. 3–38.Google Scholar
  28. Michelsen A, Larsen ON (1978) Biophysics of the Ensiferan ear. I. Tympanal vibrations in bushcrickets (Tettigoniidae) studied with laser vibrometry. J Comp Physiol 123:193–203.CrossRefGoogle Scholar
  29. Michelsen A, Larsen ON (1983) Strategies for acoustic communication in complex environments. In: Huber F, Mark H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 321–331.CrossRefGoogle Scholar
  30. Michelsen A, Löhe G (1995) Tuned directionality in cricket ears. Nature 375:639.CrossRefGoogle Scholar
  31. Michelsen A, Rohrseitz K (1995) Directional sound processing and interaural sound transmission in a small and a large grasshopper. J Exp Biol 198:1817–1827.PubMedGoogle Scholar
  32. Michelsen A, Rohrseitz K (1997) Sound localization in a habitat: an analytical approach to quantifying the degradation of directional cues. Bioacoustics, 7:291–313.CrossRefGoogle Scholar
  33. Michelsen A, Towne WF, Kirchner WH, Kryger P (1987) The acoustic near field of a dancing honeybee. J Comp Physiol A 161:633–643.CrossRefGoogle Scholar
  34. Michelsen A, Hedwig B, Elsner N (1990) Biophysical and neurophysiological effects of respiration on sound reception in the migratory locust Locusta migratoria. In: Gribakin FG, Wiese K, Popov AV (eds). Sensory Systems and Communication in Arthropods. Basel: Birkhäuser Verlag, pp. 199–203.Google Scholar
  35. Michelsen A, Heller K-G, Stumpner A, Rohrseitz K (1994) A new biophysical method to determine the gain of the acoustic trachea in bushcrickets. J Comp Physiol A 175:145–151.PubMedCrossRefGoogle Scholar
  36. Michelsen A, Popov AV, Lewis B (1994) Physics of directional hearing in the cricket Gryllus bimaculatus. J Comp Physiol A 175:153–164.CrossRefGoogle Scholar
  37. Miller LA (1977) Directional hearing in the locust Schistocerca gregaria. Forskäl (Acrididae, Orthoptera). J Comp Physiol 119:85–98.CrossRefGoogle Scholar
  38. Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48.PubMedGoogle Scholar
  39. Morse PM (1948) Vibration and Sound. New York: McGraw-Hill (new edition published by the American Institute of Physics 1981).Google Scholar
  40. Mohl B, Miller L (1976) Ultrasonic clicks produced by the peacock butterfly: a possible bat-repellent mechanism. J Exp Biol 64:639–644.Google Scholar
  41. Paul RC, Walker TJ (1979) Arboreal singing in a burrowing cricket, Anurogryllus arboreus. J Comp Physiol 132:217–224.CrossRefGoogle Scholar
  42. Payne R, Roeder KD, Wallman J (1966) Directional sensitivity of the ears of noctuid moths. J Exp Biol 44:17–31.PubMedGoogle Scholar
  43. Pierce AD (1981) Acoustics: An Introduction to Its Physical Principles and Applications. New York: McGraw-Hill (new edition published by the American Institute of Physics 1989).Google Scholar
  44. Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639.PubMedGoogle Scholar
  45. Regen J (1913) Über die Anlockung des Weibchens von Gryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens. Pflügers Arch 155:193–200.CrossRefGoogle Scholar
  46. Rheinlaender J, Römer H (1986) Insect hearing in the field. I. The use of identified nerve cells as “biological microphones.” J Comp Physiol A 158:647–651.CrossRefGoogle Scholar
  47. Risler H, Schmidt K (1967) Der Feinbau der Scolopidien im Johnstonschen Organ von Aedes aegypti L. Z Naturforsch 22B:759–762.Google Scholar
  48. Roeder KD (1967) Nerve Cells and Insect Behavior, rev. ed. Cambridge, MA: Harvard University Press.Google Scholar
  49. Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptor-elemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol 109:101–122.CrossRefGoogle Scholar
  50. Schildberger K, Huber F, Wohlers DW (1989) Central auditory pathway: neural correlates of phonotactic behavior. In: Huber F, Moore TE, Loher W (eds). Cricket Behavior and Neurobiology. Ithaca, NY: Cornell University Press, pp. 423–458.Google Scholar
  51. Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis in Gryllus campestris L (Orthoptera, Gryllidae). I. Mechanisms of acoustic orientation in intact female crickets. J Comp Physiol A 148:431–444.CrossRefGoogle Scholar
  52. Schmitz B, Scharstein H, Wendler G (1983). Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae). II. Acoustic orientation of female crickets after occlusion of single sound entrances. J Comp Physiol 152:257–264.CrossRefGoogle Scholar
  53. Schnitzler H-U, Menne D, Kober R, Heblich K (1983). The acoustical image of fluttering insects in echo-locating bats. In: Huber F, Markl H (eds). Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 235–250.CrossRefGoogle Scholar
  54. Schwabe J (1906) Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica 20:1–154.Google Scholar
  55. Shaw EAG (1974) The external ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol. V/1. Auditory System, Anatomy, Physiology (Ear). Berlin: Springer Verlag, pp. 454–490.Google Scholar
  56. Skudrzyk E (1971) The Foundations of Acoustics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  57. Tautz J (1979) Reception of particle oscillation in a medium — an unorthodox sensory capacity. Naturwissenschaften 66:452–461.CrossRefGoogle Scholar
  58. Weber T, Thorson J (1989) Phonotactic behavior of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket Behavior and Neurobiology. Ithaca, NY: Cornell University Press. pp. 310–339.Google Scholar
  59. Weber T, Thorson J, Huber F (1981) Auditory behavior of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill. J Comp Physiol A 141:215–232.CrossRefGoogle Scholar
  60. Wendler G, Löhe G (1993) The role of the medial septum in the acoustic trachea of the cricket Gryllus bimaculatus. I. Importance for efficient phonotaxis. J Comp Physiol A 173:557–564.Google Scholar
  61. Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94.CrossRefGoogle Scholar
  62. Wiley RH, Richards DG (1982) Adaptations for acoustic communication in birds: Transmission and signal detection. In: Kroodsma DE, Miller EH (eds). Acoustic Communication in Birds, Vol. 1. New York: Academic Press, pp. 131–181.Google Scholar
  63. Yager DD, Hoy RR (1987) The midline metathoracic ear of the praying mantis, Mantis religiosa. Cell Tissue Res 250:531–541.PubMedCrossRefGoogle Scholar
  64. Yost WA, Gourevitch G, eds. (1987) Directional Hearing. New York: Springer-Verlag.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Axel Michelsen

There are no affiliations available

Personalised recommendations