Wavelet-Based Image Coding: An Overview

  • Geoffrey M. Davis
  • Aria Nosratinia


This chapter presents an overview of wavelet-based image coding. We develop the basics of image coding with a discussion of vector quantization. We motivate the use of transform coding in practical settings and describe the properties of various decorrelating transforms. We motivate the use of the wavelet transform in coding using rate-distortion considerations as well as approximation-theoretic considerations. Finally we give an overview of current coders in the literature.


Discrete Cosine Transform Wavelet Coefficient Filter Bank Vector Quantization Wavelet Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform.IEEE Transactions on Computers C-23:90–93January1974. MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    M. Antonini, M. Barlaud, and P. Mathieu. Image Coding Using Wavelet Transform.IEEE Trans. Image Proc. 1(2):205–220April1992. CrossRefGoogle Scholar
  3. [3]
    Y. Arai, T. Agui, and M. Nakajima. A fast DCT-SQ scheme for images.Transactions of the IEICE 71(11):1095November 1988.Google Scholar
  4. [4]
    Ilangko Balasingham and Tor A. Ramstad. On the relevance of the regularity constraint in subband image coding. InProc. Asilomar Conference on Signals Systems and ComputersPacific Grove, 1997.Google Scholar
  5. [5]
    T. Bell, J. G. Cleary, and I. H. Witten.Text Compression.Prentice Hall, Englewood Cliffs, NJ, 1990.Google Scholar
  6. [6]
    T. Berger.Rate Distortion Theory.Prentice Hall, Englewood Cliffs, NJ, 1971.Google Scholar
  7. [7]
    Christopher M. Brislawn. Classification of nonexpansive symmetric extension transforms for multirate filter banks.Applied and Comp. Harmonic Analysis3:337–357, 1996.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    C. Sidney Burrus, Ramesh A. Gopinath, and Haitao Guo.Introduction to Wavelets and Wavelet Transforms: A Primer.Prentice-Hall, Englewood Cliffs, NJ, 1997.Google Scholar
  9. [9]
    Peter J. Burt and Edward H. Adelson. The Laplacian pyramid as a compact image code.IEEE Transactions on CommunicationsCOM31(4), April 1983.Google Scholar
  10. [10]
    W. H. Chen and C. H. Smith. Adaptive coding of monochrome and color images. IEEE Transactions on Communications COM25(11):1285–1292, November 1977.CrossRefGoogle Scholar
  11. [11]
    P. A. Chou, T. Lookabaugh, and R. M. Gray. Entropy-constrained vector quantization.IEEE Transactions on Information Theory37(1):31–42, January 1989.MathSciNetGoogle Scholar
  12. [12]
    C. Chrysafis and A. Ortega. Efficient context based entropy coding for lossy wavelet image compression. InProc. Data Compression Conferencepages 241–250, Snowbird, Utah, 1997.Google Scholar
  13. [13]
    Ronald R. Coifman and Yves Meyer. Nouvelles bases orthonormées de l2(r) ayant la structure du système de Walsh. Technical Report Preprint, Department of Mathematics, Yale University, 1989.Google Scholar
  14. [14]
    Ronald R. Coifman and Mladen Victor Wickerhauser. Entropy based algorithms for best basis selection.IEEE Transactions on Information Theory32:712–718March1992.Google Scholar
  15. [15]
    T.M. Cover and J.A. Thomas.Elements of Information Theory. John Wiley & Sons, Inc., New York, 1991.MATHCrossRefGoogle Scholar
  16. [16]
    A. Croisier, D. Esteban, and C. Galand. Perfect channel splitting by use of interpolation/decimation/tree decomposition techniques. InProc. Int. Symp. on Information Circuits and SystemsPatras, Greece, 1976.Google Scholar
  17. [17]
    M. Crouse and K. Ramchandran. Joint thresholding and quantizer selection for decoder-compatible baseline JPEG. InProc. ICASSPMay 1995.Google Scholar
  18. [18]
    Ingrid Daubechies.Ten Lectures on Wavelets.SIAM, Philadelphia, PA, 1992.CrossRefGoogle Scholar
  19. [19]
    Geoffrey M. Davis. The wavelet image compression construction kit. Scholar
  20. [20]
    Geoffrey M. Davis and Sumit Chawla. Image coding using optimized significance tree quantization. In James A. Storer and Martin Cohn, editorsProc. Data Compression Conferencepages 387–396, March 1997.Google Scholar
  21. [21]
    G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes.Constructive Approximation5(1):49–68,1989.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    R. A. DeVore, B. Jawerth, and B. J. Lucier. Image Compression through Wavelet Transform Coding.IEEE Trans. Info. Theory38(2):719–746, March 1992.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Donald L. Duttweiler and Christodoulos Chamzas. Probability estimation in arithmetic and adaptive-Huffman entropy coders.IEEE Transactions on Image Processing4(3):237–246, March 1995.CrossRefGoogle Scholar
  24. [24]
    N. Farvardin and J. W. Modestino. Optimum quantizer performance for a class of non-Gaussian memoryless sources.IEEE Transactions on Information Theory30:485–497, May 1984.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    E. Feig and E. Linzer. Discrete cosine transform algorithms for image data compression. InElectronic Imaging ‘80 Eastpages 84–87, Boston, MA, October 1990.Google Scholar
  26. [26]
    G. D. Forney. The Viterbi algorithm.Proceedings of the IEEE61(3):268–278, March 1973.MathSciNetCrossRefGoogle Scholar
  27. [27]
    J. Garcia-Frias and J. D. Villasenor. An analytical treatment of channel-induced distortion in run length coded image subbands. InProc. Data Compression Conferencepages 52–61, Snowbird, Utah, March 1997.Google Scholar
  28. [28]
    A. Gersho and R. M. Gray.Vector Quantization and Signal Compression.Kluwer Academic Publishers, 1992.MATHCrossRefGoogle Scholar
  29. [29]
    Allen Gersho. Asymptotically optimal block quantization.IEEE Transactions on Information TheoryIT-25(4):373–380, July 1979.MATHCrossRefGoogle Scholar
  30. [30]
    B. Girod, F. Hartung, and U. Horn. Subband image coding. InSubband and wavelet transforms: design and applicationsBoston, MA: Kluwer Academic Publishers, 1995.Google Scholar
  31. [31]
    Herbert Gish and John N. Pierce. Asymptotically efficient quantizing.IEEE Transactions on Information TheoryIT-14(5):676–683, September 1968.CrossRefGoogle Scholar
  32. [32]
    R. M. Gray, J. C. Kieffer, and Y. Linde. Locally optimal block quantizer design.Information and Control45:178–198, May 1980.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    C. Herley, J. Kovacevié, K. Ramchandran, and M. Vetterli. Tilings of the time-frequency plane: Construction of arbitrary orthogonal bases and fast tiling algorithms.IEEE Transactions on Signal Processing41:3341–3359, December 1993.MATHCrossRefGoogle Scholar
  34. [34]
    Cormac Herley. Boundary filters for finite-length signals and time-varying filter banks.IEEE Trans. Circuits and Systems II42(2):102–114, February 1995.CrossRefGoogle Scholar
  35. [35]
    Cormac Herley and Martin Vetterli. Orthogonal time-varying filter banks and wavelets. InProc. IEEE Int. Symp. Circuits Systemsvolume 1, pages 391–394, May 1993.Google Scholar
  36. [36]
    Cormac Herley, Zixiang Xiong, Kannan Ramchandran, and Michael T. Orchard. Joint space-frequency segmentation using balanced wavelet packet trees for least-cost image representation.IEEE Transactions on Image ProcessingSeptember 1997.Google Scholar
  37. [37]
    Roger A. Horn and Charles R. Johnson.Matrix Analysis.Cambridge University Press, New York, 1990.MATHGoogle Scholar
  38. [38]
    J. Y. Huang and P. M. Schultheiss. Block quantization of correlated Gaussian random variables.IEEE Transactions on CommunicationsCS-11:289–296, September 1963.CrossRefGoogle Scholar
  39. [39]
    H. Jafarkhani, N. Farvardin, and C. C. Lee. Adaptive image coding based on the discrete wavelet transform. InProc. IEEE Int. Conf. Image Proc. (ICIP)volume 3, pages 343–347, Austin, TX, November 1994.Google Scholar
  40. [40]
    N. S. Jayant and P. Noll.Digital Coding of waveforms.Prentice-Hall, Englewood Cliffs, NJ, 1984.Google Scholar
  41. [41]
    R. L. Joshi, T.R. Fischer, and R. H. Bamberger. Optimum classification in subband coding of images. InProc. IEEE Int. Conf. Image Proc. (ICIP)volume 2, pages 883–887, Austin, TX, November 1994.Google Scholar
  42. [42]
    R. L. Joshi, H. Jafarkhani, J. H. Kasner, T. R. Fisher, N. Farvardin, and M. W. Marcellin. Comparison of different methods of classification in subband coding of images.IEEE Transactions on Image Processingsubmitted.Google Scholar
  43. [43]
    J. H. Kasner and M. W. Marcellin. Adaptive wavelet coding of images. InProc. IEEE Int. Conf. Image Proc. (ICIP)volume 3, pages 358–362, Austin, TX, November 1994.Google Scholar
  44. [44]
    Jelena Kovacevié and Wim Sweldens. Interpolating filter banks and wavelets in arbitrary dimensions. Technical report, Lucent Technologies, Murray Hill, NJ, 1997.Google Scholar
  45. [45]
    A. S. Lewis and G. Knowles. Image compression using the 2-d wavelet transform.IEEE Transactions on Image Processing1(2):244–250, April 1992.CrossRefGoogle Scholar
  46. [46]
    S. M. LoPresto, K. Ramchandran, and M. T. Orchard. Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework. InProc. Data Compression Conferencepages 221–230, Snowbird, Utah, 1997.Google Scholar
  47. [47]
    Stèphane Mallat. A theory for multiresolution signal decomposition: the wavelet representation.IEEE Trans. Pattern Analysis and Machine Intelligence11(7):674–693, July 1989.MATHCrossRefGoogle Scholar
  48. [48]
    Stèphane Mallat and Frédéric Falzon. Understanding image transform codes. InProc. SPIE Aerospace Conf.Orlando, April 1997.Google Scholar
  49. [49]
    M. W. Marcellin. On entropy-constrained trellis coded quantization.IEEE Transactions on Communications42(1):14–16, January 1994.MathSciNetCrossRefGoogle Scholar
  50. [50]
    M. W. Marcellin and T. R. Fischer. Trellis coded quantization of memoryless and Gauss-Markov sources.IEEE Transactions on Communications38(1):82–93, January 1990.MathSciNetCrossRefGoogle Scholar
  51. [51]
    D. Marpe and H. L. Cycon. Efficient pre-coding techniques for wavelet-based image compression. Submitted to PCS, Berlin, 1997.Google Scholar
  52. [52]
    Pierre Moulin. A multiscale relaxation algorithm for SNR maximization in nonorthogonal subband coding.IEEE Transactions on Image Processing4(9):1269–1281, September 1995.CrossRefGoogle Scholar
  53. [53]
    A. Nosratinia and M. T. Orchard. A multi-resolution framework for backward motion compensation. InProc. SPIE Symposium on Electronic ImagingSan Jose, CA, February 1995.Google Scholar
  54. [54]
    W. Pennebaker and J. Mitchell.JPEG still image data compression standard.Van Nostrand Reinhold, New York, 1993.Google Scholar
  55. [55]
    W. B. Pennebaker and J. L. Mitchell.JPEG Still Image Data Compression Standard.Van Nostrand Reinhold, New York, 1992.Google Scholar
  56. [56]
    Kannan Ramchandran and Martin Vetterli. Best wavelet packet bases in a rate-distortion sense.IEEE Transactions on Image Processing2(2):160–175, 1992.CrossRefGoogle Scholar
  57. [57]
    K.R. Rao and P. Yip.The Discrete Cosine Transform.Academic Press, New York, 1990.Google Scholar
  58. [58]
    S. L. Regunathan, K. Rose, and S. Gadkari. Multimode image coding for noisy channels. InProc. Data Compression Conferencepages 82–90, Snowbird, Utah, March 1997.Google Scholar
  59. [59]
    Olivier Rioul. Simple regularity criteria for subdivision schemes.SIAM J. Math. Analysis23:1544–1576, November 1992.MathSciNetMATHCrossRefGoogle Scholar
  60. [60]
    Olivier Rioul. Regular wavelets: a discrete-time approach.IEEE Transactions on Signal Processing41(12):3572–3579, December 1993.MATHCrossRefGoogle Scholar
  61. [61]
    A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set partitioning in hierarchical trees.IEEE Transactions on Circuits and Systems for Video Technology6(3):243–250, June 1996.CrossRefGoogle Scholar
  62. [62]
    A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set partitioning in hierarchichal trees.IEEE Trans. Circuits and Systems for Video Technology6(3):243–250, June 1996.CrossRefGoogle Scholar
  63. [63]
    Criminal Justice Information Services.WSQ Gray-Scale Fingerprint Image Compression Specification (ver. 2.0).Federal Bureau of Investigation, February 1993.Google Scholar
  64. [64]
    C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion.In IRE Nat. Cony. Rec.volume 4, pages 142–163, March 1959.Google Scholar
  65. [65]
    J. Shapiro. Embedded image coding using zero-trees of wavelet coefficients.IEEE Transactions on Signal Processing41(12):3445–3462, December 1993.MATHCrossRefGoogle Scholar
  66. [66]
    J. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.IEEE Transactions on Signal Processing41(12):3445–3462, December 1993.MATHCrossRefGoogle Scholar
  67. [67]
    P. G. Sherwood and K. Zeger. Progressive image coding on noisy channels. InProc. Data Compression Conferencepages 72–81, Snowbird, Utah, March 1997.Google Scholar
  68. [68]
    Y. Shoham and A. Gersho. Efficient bit allocation for an arbitrary set of quantizers.IEEE Trans. Acoustics Speech and Signal Processing36(9):1445–1453, September 1988.MATHGoogle Scholar
  69. [69]
    J. R. Smith and S. F. Chang. Frequency and spatially adaptive wavelet packets. InProc. ICASSPMay 1995.Google Scholar
  70. [70]
    M. J. T. Smith and T. P. Barnwell. A procedure for designing exact reconstruction filter banks for tree structured subband coders. InProc. ICASSPpages 27.1.1–27.1.4, San Diego, CA, March 1984.Google Scholar
  71. [71]
    M. J. T. Smith and T. P. Barnwell. Exact reconstruction techniques for tree-structured subband coders.IEEE Trans. ASSPASSP-34:434–441, June 1986.CrossRefGoogle Scholar
  72. [72]
    G. Strang and G. Fix. A Fourier analysis of the finite element variational method.Constructive Aspects of Functional Analysispages 796–830, 1971.Google Scholar
  73. [73]
    Gilbert Strang and Truong Q. Nguyen.Wavelets and Filter Banks.Wellesley-Cambridge Press, Wellesley, MA, 1996.Google Scholar
  74. [74]
    W. Sweldens and R. Piessens. Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions.SIAM Journal of Numerical Analysis31(4):1240–1264, August 1994.MathSciNetMATHCrossRefGoogle Scholar
  75. [75]
    Wim Sweldens. The lifting scheme: A new philosophy in biorthogonal wavelet constructions. In A. F. Laine and M. Unser, editorsWavelet Applications in Signal and Image Processing IIIpages 68–79. Proc. SPIE 2569, 1995.Google Scholar
  76. [76]
    Wim Sweldens and Peter Schröder. Building your own wavelets at home. Technical Report 1995:5, Industrial Mathematics Initiative, Mathematics Department, University of South Carolina, 1995.Google Scholar
  77. [77]
    David Taubman and Avideh Zakhor. Multirate 3-D subband coding of video.IEEE Trans. Image Proc.3(5), September 1994.Google Scholar
  78. [78]
    L. Fejes Toth. Sur la representation d’une population infinie par un nombre fini d’elements.Acta Math. Acad. Scient. Hung.10:299–304, 1959.MathSciNetMATHCrossRefGoogle Scholar
  79. [79]
    G. Ungerboeck. Channel coding with multilevel/phase signals.IEEE Transactions on Information TheoryIT-28(1):55–67, January 1982.MathSciNetMATHCrossRefGoogle Scholar
  80. [80]
    Michael Unser. Approximation power of biorthogonal wavelet expansions.IEEE Transactions on Signal Processing44(3):519–527, March 1996.CrossRefGoogle Scholar
  81. [81]
    P.P. Vaidyanathan. Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having perfect reconstruction property.IEEE Trans. ASSPASSP-35:476–492, April 1987.MATHCrossRefGoogle Scholar
  82. [82]
    P.P. Vaidyanathan.Multirate systems and filter banks.Prentice Hall, Englewood Cliffs, NJ, 1993.Google Scholar
  83. [83]
    M. Vetterli. Splitting a signal into subband channels allowing perfect reconstruction. InProc. LASTED Conf. Appl. Signal ProcessingParis, France, June 1985.Google Scholar
  84. [84]
    M. Vetterli. Filter banks allowing perfect reconstruction.Signal Processing10:219–244, April 1986.MathSciNetCrossRefGoogle Scholar
  85. [85]
    Martin Vetterli and Cormac Herley. Wavelets and filter banks: Theory and design.IEEE Trans. Acoust. Speech Signal Proc.40(9):2207–2232, 1992.MATHGoogle Scholar
  86. [86]
    Martin Vetterli and Jelena Kovacevié.Wavelets and Subband Coding.Prentice Hall, Englewood Cliffs, NJ, 1995.Google Scholar
  87. [87]
    J. Villasenor, B. Belzer, and J. Liao. Wavelet filter evaluation for image compression.IEEE Transactions on image processing2:1053–1060, August 1995.CrossRefGoogle Scholar
  88. [88]
    Brian A. Wandell.Foundations of Vision.Sinauer Associates, Sunderland, MA, 1995.Google Scholar
  89. [89]
    A.B. Watson, G.Y. Yang, J.A. Soloman, and J. Villasenor. Visual thresholds for wavelet quantization error. InProceedings of the SPIEvolume 2657, pages 382–392, 1996.CrossRefGoogle Scholar
  90. [90]
    Mladen Victor Wickerhauser.Adapted Wavelet Analysis from Theory to Software.A. K. Peters, Wellesley, MA, 1994.Google Scholar
  91. [91]
    J. W. Woods and T. Naveen. A filter based allocation scheme for subband compression of HDTV.IEEE Trans. Image Proc.IP-1:436–440, July 1992.CrossRefGoogle Scholar
  92. [92]
    Z. Xiong, K. Ramchandran, M. Orchard, and K. Asai. Wavelet packets-based image coding using joint space-frequency quantization.Preprint1996.Google Scholar
  93. [93]
    Z. Xiong, K. Ramchandran, and M. T. Orchard. Space-frequency quantization for wavelet image coding.IEEE Transactions on Image Processing6(5):677–693, May 1997.CrossRefGoogle Scholar
  94. [94]
    Zixiang Xiong, Kannan Ramchandran, and Michael T. Orchard. Space-frequency quantization for wavelet image coding.preprint1995.Google Scholar
  95. [95]
    Y. Yoo, A. Ortega, and B. Yu. Progressive classification and adaptive quantization of image subbands. Preprint, 1997.Google Scholar
  96. [96]
    Paul L. Zador. Asymptotic quantization error of continuous signals and the quantization dimension.IEEE Transactions on Information TheoryIT-28(2):139–149, March 1982.MATHCrossRefGoogle Scholar
  97. [97]
    K. Zeger, J. Vaisey, and A. Gersho. Globally optimal vector quantizer design by stochastic relaxation.IEEE Transactions on Signal Processing40(2):310–322, February 1992.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Geoffrey M. Davis
  • Aria Nosratinia

There are no affiliations available

Personalised recommendations