Skip to main content

Empirical Bayesian Spatial Prediction Using Wavelets

  • Chapter

Part of the book series: Lecture Notes in Statistics ((LNS,volume 141))

Abstract

Wavelet shrinkage methods, introduced by Donoho and John-stone (1994, 1995, 1998) and Donoho et al. (1995), are a powerful way to carry out signal denoising, especially when the underlying signal has a sparse wavelet representation. Wavelet shrinkage based on the Bayesian approach involves specifying a prior distribution for the wavelet coefficients. In this chapter, we consider a Gaussian prior with nonzero means for wavelet coefficients, which is different from other priors used in the literature. An empirical Bayes approach is taken by estimating the mean parameters using Q-Q plots, and the hyperparameters of the prior covariance are estimated by a pseudo maximum likelihood method. A simulation study shows that our empirical Bayesian spatial prediction approach outperforms the well known VisuShrink and SureShrink methods for recovering a wide variety of signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramovich, F. and Benjamini, Y. (1995). Thresholding of wavelet coefficients as multiple hypotheses testing procedure. In Antoniadis, A. and Oppenheim, G., editors, Wavelets and Statistics, volume 103 of Lecture Notes in Statistics, pages 5–14. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Abramovich, F. and Benjamini, Y. (1996). Adaptive thresholding of wavelet coefficients. Computational Statistics and Data Analysis, 22:351–361.

    Article  MathSciNet  Google Scholar 

  • Abramovich, F., Sapatinas, T., and Silverman, B. W. (1998). Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society B, 60:725–749.

    Article  MathSciNet  MATH  Google Scholar 

  • Cambanis, S. and Houdré, C. (1995). On the continuous wavelet transform of second-order random processes. IEEE Transactions on Information Theory, 41:628–642.

    Article  MATH  Google Scholar 

  • Chipman, H. A., Kolaczyk, E. D., and McCulloch, R. E. (1997). Adaptive Bayesian wavelet shrinkage. Journal of the American Statistical Association, 92:1413–1421.

    Article  MATH  Google Scholar 

  • Clyde, M., Parmigiani, G., and Vidakovic, B. (1996). Bayesian strategies for wavelet analysis. Statistical Computing and Statistical Graphics Newsletter, 7:3–9.

    Google Scholar 

  • Clyde, M., Parmigiani, G., and Vidakovic, B. (1998). Multiple shrinkage and subset selection in wavelets. Biometrika, 85:391–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Crouse, M., Nowak, R., and Baraniuk, R. (1998). Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing, 46:886–902.

    Article  MathSciNet  Google Scholar 

  • Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  • Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81:425–455.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90:1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L. and Johnstone, I. M. (1998). Minimax estimation via wavelet shrinkage. Annals of Statistics, 26. Forthcoming.

    Google Scholar 

  • Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1995). Wavelet shrinkage: Asymptopia? (with discussion). Journal of the Royal Statistical Society B, 57:301–369.

    MathSciNet  MATH  Google Scholar 

  • George, E. I. and McCulloch, R. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88:881–889.

    Article  Google Scholar 

  • George, E. I. and McCulloch, R. (1997). Approaches to Bayesian variable selection. Statistica Sinica, 7:339–373.

    MATH  Google Scholar 

  • Gong, G. and Samaniego, F. J. (1981). Pseudo maximum likelihood estimation: Theory and applications. Annals of Statistics, 9:861–869.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, H.-C. and Cressie, N. (1997a). Deterministic/stochastic wavelet decomposition for recovery of signal from noisy data. Technical Report 97-23, Department of Statistics, Iowa State University, Ames, IA.

    Google Scholar 

  • Huang, H.-C. and Cressie, N. (1997b). Multiscale spatial modeling. In ASA 1997 Proceedings of the Section on Statistics and the Environment, pages 49-54, Alexandria, VA.

    Google Scholar 

  • Lu, H. H.-C., Huang, S.-Y., and Tung, Y.-C. (1997). Wavelet shrinkage for nonparametric mixed-effects models. Technical report, Institute of Statistics, National Chiao-Tung University.

    Google Scholar 

  • Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:674–693.

    Article  MATH  Google Scholar 

  • Nason, G. P. (1995). Choice of the threshold parameter in wavelet function estimation. In Antoniadis, A. and Oppenheim, G., editors, Wavelets and Statistics, volume 103 of Lecture Notes in Statistics, pages 261–280. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Nason, G. P. (1996). Wavelet shrinkage using cross-validation. Journal of the Royal Statistical Society B, 58:463–479.

    MathSciNet  MATH  Google Scholar 

  • Ogden, R. T. and Parzen, E. (1996a). Change-point approach to data analytic wavelet thresholding. Statistics and Computing, 63:93–99.

    Article  Google Scholar 

  • Ogden, R. T. and Parzen, E. (1996b). Data dependent wavelet thresholding in nonparametric regression with change-point applications. Computational Statistics and Data Analysis, 22:53–70.

    Article  MATH  Google Scholar 

  • Ruggeri, F. and Vidakovic, B. (1999). A Bayesian decision theoretic approach to wavelet thresholding. Statistica Sinica, 9. To appear.

    Google Scholar 

  • Vidakovic, B. (1998). Nonlinear wavelet shrinkage with Bayes rules and Bayes factors. Journal of the American Statistical Association, 93:173–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Vidakovic, B. and Müller, P. (1995). Wavelet shrinkage with affine Bayes rules with applications. Discussion Paper 95-24, ISDS, Duke University, Durham, NC.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, HC., Cressie, N. (1999). Empirical Bayesian Spatial Prediction Using Wavelets. In: Müller, P., Vidakovic, B. (eds) Bayesian Inference in Wavelet-Based Models. Lecture Notes in Statistics, vol 141. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0567-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0567-8_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98885-6

  • Online ISBN: 978-1-4612-0567-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics