Skip to main content

Best Basis Representations with Prior Statistical Models

  • Chapter
Bayesian Inference in Wavelet-Based Models

Part of the book series: Lecture Notes in Statistics ((LNS,volume 141))

Abstract

Wavelet packets and local trigonometric bases provide an efficient framework and fast algorithms to obtain a “best representation” of a deterministic signal. Applying these deterministic search techniques to stochastic signals may, however, lead to statistically unreliable results. In this chapter, we revisit this problem and introduce prior models on the underlying signal in noise. We propose several techniques to derive the prior parameters and develop a Bayesian-based approach to the best basis problem. As illustrated by applications to signal denoising, this leads to reduced estimation errors while preserving the classical tree search algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramovich, F., Sapatinas, T. & Silverman, B.W. (1998a). Wavelet thresholding via a Bayesian approach. J. Roy. Statist Soc. B 60, 725–749.

    Article  MATH  Google Scholar 

  2. J.B. Buckheit and D.L. Donoho. Wavelab and Reproducible Research. Stanford University, 1995.

    Google Scholar 

  3. J. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Verlag, New York, 1985.

    MATH  Google Scholar 

  4. Q. Cheng, R. Chen, and T. Li. Simultaneous Wavelet Estimation and Deconvolution of Reflection Seismic Signals. IEEE Trans. Geoscience and Rem. Sens., 34:377–384, 1996.

    Article  Google Scholar 

  5. A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and fast wavelet algorithms. Applied and Computational Harmonic Analysis, 1:54–81, Dec. 1993.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Champagnat, Y. Goussard, and J. Idier. Unsupervised Deconvolution of Sparse Spike Trains using Stochastic Approximation. IEEE Trans. Signal Processing, 44:2988–2998, 1996.

    Article  Google Scholar 

  7. F. Champagnat and J. Idier. An alternative to standard maximum likelihood for Gaussian mixtures. In Proc. IEEE Conf. Acoust., Speech, Signal Processing, pages 2020-2023, Detroit, USA, May 9–12 1995.

    Google Scholar 

  8. H. A. Chipman, E. D. Kolaczyck, and R. E. McCulloch. Adaptive Bayesian Wavelet Shrinkage. J. Amer. Statist. Assoc, 92:1413–1421, 1997.

    Article  MATH  Google Scholar 

  9. M. S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet-Based Statistical Signal Processing Using Hidden Markov Models. IEEE Trans. Signal Processing, 46:886–902, 1998.

    Article  MathSciNet  Google Scholar 

  10. M. Clyde, G. Parmigiani, and B. Vidakovic. Multiple Shrinkage and Subset Selection in Wavelets. Biometrika, 85:391–401, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. R. Coifman and M. V. Wickerhauser. Entropy-based algorithms for best basis selection. IEEE Trans. Informat. Theory, IT-38:713–718, Mar. 1992.

    Article  Google Scholar 

  12. D. L. Donoho and I. M. Johnstone. Ideal denoising in an orthogonal basis chosen from a library of bases. C. R. Acad. Sci. Parts, 319:1317–1322, 1994.

    MathSciNet  MATH  Google Scholar 

  13. D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81:425–455, Sept. 1994.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Statist. Soc. B, 39:1–38, 1977.

    MathSciNet  MATH  Google Scholar 

  15. P. Huber. The behaviour of maximum-likelihood estimates under nonstandard conditions. In Proc. Berkeley Symp. on Math. Stat. and Prob., volume 1, pages 73–101, 1967.

    Google Scholar 

  16. C. Herley and M. Vetterli. Orthogonal time-varying filter banks and wavelet packets. IEEE Trans. Signal Processing, 42:2650–2663, Oct. 1994.

    Article  Google Scholar 

  17. H. Krim, S. Mallat, D. Donoho, and A. Willsky. Best basis algorithm for signal enhancement. In Proc. IEEE Conf. Acoust., Speech, Signal Processing, Detroit, MI, May 1995.

    Google Scholar 

  18. H. Krim and J.-C. Pesquet. On the statistics of best bases criteria. In A. Antoniadis, editor, Wavelets and statistics. Lecture Notes in Statistics, Springer Verlag, 1995.

    Google Scholar 

  19. D. Leporini. Modélisation Statistique et Paquets d’Ondelettes: Application au Débruitage de Signaux Transitoires d’Acoustique Sous-Marine. PhD thesis, Université Paris XI, Sept. 1998.

    Google Scholar 

  20. S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. Mach. Intell, PAMI-11:674–693, Jul. 1989.

    Article  Google Scholar 

  21. R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incremental and other variants. In M.I. Jordan, editor, Learning in Graphical Models. Kluwer, 1998.

    Google Scholar 

  22. J.-C. Pesquet, H. Krim, D. Leporini, and E. Hamman. Bayesian Approach to Best Basis Selection. In Proc. IEEE Conf. Acoust., Speech, Signal Processing, pages 2634-2638, Atlanta, USA, May 7-9 1996.

    Google Scholar 

  23. N. Saito. Local feature extraction and its applications using a library of bases. PhD thesis, Yale University, Dec. 1994.

    Google Scholar 

  24. B. Vidakovic. Nonlinear wavelet shrinkage with Bayes rules and Bayes factors. J. Amer. Statist. Assoc., 93:173–179, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Zacks. Parametric Statistical Inference. International Series in Nonlinear Mathematics, Pergamon Press, New York, 1981.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leporini, D., Pesquet, JC., Krim, H. (1999). Best Basis Representations with Prior Statistical Models. In: Müller, P., Vidakovic, B. (eds) Bayesian Inference in Wavelet-Based Models. Lecture Notes in Statistics, vol 141. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0567-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0567-8_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98885-6

  • Online ISBN: 978-1-4612-0567-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics