Abstract
Wavelet packets and local trigonometric bases provide an efficient framework and fast algorithms to obtain a “best representation” of a deterministic signal. Applying these deterministic search techniques to stochastic signals may, however, lead to statistically unreliable results. In this chapter, we revisit this problem and introduce prior models on the underlying signal in noise. We propose several techniques to derive the prior parameters and develop a Bayesian-based approach to the best basis problem. As illustrated by applications to signal denoising, this leads to reduced estimation errors while preserving the classical tree search algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramovich, F., Sapatinas, T. & Silverman, B.W. (1998a). Wavelet thresholding via a Bayesian approach. J. Roy. Statist Soc. B 60, 725–749.
J.B. Buckheit and D.L. Donoho. Wavelab and Reproducible Research. Stanford University, 1995.
J. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Verlag, New York, 1985.
Q. Cheng, R. Chen, and T. Li. Simultaneous Wavelet Estimation and Deconvolution of Reflection Seismic Signals. IEEE Trans. Geoscience and Rem. Sens., 34:377–384, 1996.
A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and fast wavelet algorithms. Applied and Computational Harmonic Analysis, 1:54–81, Dec. 1993.
F. Champagnat, Y. Goussard, and J. Idier. Unsupervised Deconvolution of Sparse Spike Trains using Stochastic Approximation. IEEE Trans. Signal Processing, 44:2988–2998, 1996.
F. Champagnat and J. Idier. An alternative to standard maximum likelihood for Gaussian mixtures. In Proc. IEEE Conf. Acoust., Speech, Signal Processing, pages 2020-2023, Detroit, USA, May 9–12 1995.
H. A. Chipman, E. D. Kolaczyck, and R. E. McCulloch. Adaptive Bayesian Wavelet Shrinkage. J. Amer. Statist. Assoc, 92:1413–1421, 1997.
M. S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet-Based Statistical Signal Processing Using Hidden Markov Models. IEEE Trans. Signal Processing, 46:886–902, 1998.
M. Clyde, G. Parmigiani, and B. Vidakovic. Multiple Shrinkage and Subset Selection in Wavelets. Biometrika, 85:391–401, 1998.
R. R. Coifman and M. V. Wickerhauser. Entropy-based algorithms for best basis selection. IEEE Trans. Informat. Theory, IT-38:713–718, Mar. 1992.
D. L. Donoho and I. M. Johnstone. Ideal denoising in an orthogonal basis chosen from a library of bases. C. R. Acad. Sci. Parts, 319:1317–1322, 1994.
D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81:425–455, Sept. 1994.
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Statist. Soc. B, 39:1–38, 1977.
P. Huber. The behaviour of maximum-likelihood estimates under nonstandard conditions. In Proc. Berkeley Symp. on Math. Stat. and Prob., volume 1, pages 73–101, 1967.
C. Herley and M. Vetterli. Orthogonal time-varying filter banks and wavelet packets. IEEE Trans. Signal Processing, 42:2650–2663, Oct. 1994.
H. Krim, S. Mallat, D. Donoho, and A. Willsky. Best basis algorithm for signal enhancement. In Proc. IEEE Conf. Acoust., Speech, Signal Processing, Detroit, MI, May 1995.
H. Krim and J.-C. Pesquet. On the statistics of best bases criteria. In A. Antoniadis, editor, Wavelets and statistics. Lecture Notes in Statistics, Springer Verlag, 1995.
D. Leporini. Modélisation Statistique et Paquets d’Ondelettes: Application au Débruitage de Signaux Transitoires d’Acoustique Sous-Marine. PhD thesis, Université Paris XI, Sept. 1998.
S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. Mach. Intell, PAMI-11:674–693, Jul. 1989.
R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incremental and other variants. In M.I. Jordan, editor, Learning in Graphical Models. Kluwer, 1998.
J.-C. Pesquet, H. Krim, D. Leporini, and E. Hamman. Bayesian Approach to Best Basis Selection. In Proc. IEEE Conf. Acoust., Speech, Signal Processing, pages 2634-2638, Atlanta, USA, May 7-9 1996.
N. Saito. Local feature extraction and its applications using a library of bases. PhD thesis, Yale University, Dec. 1994.
B. Vidakovic. Nonlinear wavelet shrinkage with Bayes rules and Bayes factors. J. Amer. Statist. Assoc., 93:173–179, 1998.
S. Zacks. Parametric Statistical Inference. International Series in Nonlinear Mathematics, Pergamon Press, New York, 1981.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer Science+Business Media New York
About this chapter
Cite this chapter
Leporini, D., Pesquet, JC., Krim, H. (1999). Best Basis Representations with Prior Statistical Models. In: Müller, P., Vidakovic, B. (eds) Bayesian Inference in Wavelet-Based Models. Lecture Notes in Statistics, vol 141. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0567-8_11
Download citation
DOI: https://doi.org/10.1007/978-1-4612-0567-8_11
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-98885-6
Online ISBN: 978-1-4612-0567-8
eBook Packages: Springer Book Archive