Advertisement

Fatty Acids as Trophic and Chemical Markers in Freshwater Ecosystems

  • Guillermo E. Napolitano

Abstract

The elucidation of trophic relationships and the identification of sources and sinks of organic matter are important steps for understanding the dynamics of aquatic ecosystems (Pimm et al., 1991). The trophic relationships between aquatic organisms can be investigated in a number of ways, from the inspection of gut contents to the use of biochemical, immunological (Grisley and Boyle, 1985), and stable isotope analyses (Peterson and Fry, 1987). Some lipid species (fatty acids, fatty alcohols, hydrocarbons, and sterols) are limited to certain taxa, so if the lipid in question is metabolically stable (or retains its basic structure after consumption), it may be used to trace energy transfers through the food chain, thus helping to define predator—prey relationships.

Keywords

Fatty Acid Composition Total Fatty Acid Fatty Acid Profile Particulate Organic Matter Ringed Seal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackman, R.G.; Burgher, R.D. Cod liver oil: component fatty acids as determined by gasliquid chromatography. J. Fish. Res. Bd. Can. 21:319–326; 1964.Google Scholar
  2. Ackman, R.G.; Takeuchi, T. Comparison of fatty acids and lipids of smolting hatchery-fed and wild Atlantic salmon Salmo salar. Lipids 21:117–120; 1986.PubMedCrossRefGoogle Scholar
  3. Ackman, R.G.; Manzer, A.; Joseph, J.D. Tentative identification of an unusual naturally-occurring polyenoic fatty acid by calculation from precision open-tubular GLC and structural element retention data. Chromatographia 7:107–114; 1974.CrossRefGoogle Scholar
  4. Ackman, R.G.; Eaton, C.A.; Litchfield, C. Composition of wax esters, triglycerides and diacyl glyceryl ethers in the jaw and blubber fats of the Amazon River dolphin (Irma geoffrensis). Lipids 6:69–77; 1971.PubMedCrossRefGoogle Scholar
  5. Ackman, R.G.; Tocher, C.S.; McLachlan, J. Marine phytoplankter fatty acids. J. Fish. Res. Bd. Can. 25:1603–1620; 1968.CrossRefGoogle Scholar
  6. Ahlgren, G.; Gustafsson, I-B.; Boberg, M. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28:37–50; 1992.CrossRefGoogle Scholar
  7. Ahlgren, G.; Lundstedt, L.; Brett, M.; Forsberg, C. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12:809–818; 1990.CrossRefGoogle Scholar
  8. Armstrong, F.A.J.; Williams, P.M.; Strickland, J.D.H. Photo-oxidation of organic matter in sea water by ultraviolet radiation, analytical and other applications. Nature 211:481–483; 1966.CrossRefGoogle Scholar
  9. Barnes, M.A.; Barnes, W.C. Organic compounds in lake sediments. In: Lerman, A., ed. Lakes. Chemistry, Geology, Physics. New York: Springer-Verlag; 1978:p. 127–152.Google Scholar
  10. Beach, D.H.; Harrington, G.W.; Holtz, C.G. The polyunsaturated fatty acids of marine and freshwater Cryptomonads. J. Protozool. 17:501–510; 1970.Google Scholar
  11. Bell, J.G.; Guioni, C.; Sargent, J.R. Fatty acid composition of 10 freshwater invertebrates which are natural food organisms of Atlantic salmon parr (Salmo salar): a comparison with commercial diets. Aquaculture 128:301–313; 1994.CrossRefGoogle Scholar
  12. Bell, M.V.; Henderson, R.J.; Sargent, J.R. The role of polyunsaturated fatty acids in fish. Comp. Biochem. Physiol. 83B:711–719; 1986.Google Scholar
  13. Bishop, D.G.; Bain, J.N.; Downton, J.S. Ultrastructure and lipid composition of zooxanthellae from Tridacna maxima. Aust. J. Plant Physiol. 3:33–40; 1976.Google Scholar
  14. Boon, P.I.; Virtue, P.; Nichols, P.D. Microbial consortia in wetland sediments: a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Mar. Freshwat. Res. 47:27–41; 1996.CrossRefGoogle Scholar
  15. Bottino, N.R.. The fatty acids of Antarctic phytoplankton and euphausids. Fatty acid exchange among trophic levels of the Ross Sea. Mar. Biol. 27:197–204; 1974.Google Scholar
  16. Bourbonniere, R.A.; Meyers, P.A. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr. 41:352–359; 1996.Google Scholar
  17. Bourdier, G.A.; Amblard, C.A. Variabilités verticaux et temporelles des acides gras d’un phytoplancton lacustre au cours d’un cycle nycthemeral. Hydrobiologia 157:57–68; 1988.CrossRefGoogle Scholar
  18. Bourdier, G.A.; Amblard, C.A. Evolution de la composition en acides gras d’un phy-toplancton lacustre (Lac Pavin, France). Int. Rev. Ges. Hydrobiol. 72:81–95; 1987.CrossRefGoogle Scholar
  19. Bourdier, G.A.; Amblard, C.A. Lipids in Acanthodiaptomus denticornis during starvation and fed on three different algae. J. Plankton Res. 11:1201–1212; 1989.CrossRefGoogle Scholar
  20. Brown, M.R.; Jeffrey, S.W. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J. Exp. Mar. Biol. Ecol. 161:91–113; 1992.CrossRefGoogle Scholar
  21. Carpenter, E.J.; Harvey, R.H., Fry, B.; Capone, D.G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep-Sea Res. 44:27–38; 1997.CrossRefGoogle Scholar
  22. Caudales, R.; Moreau, R.A.; Wells J. M. Cellular lipid and fatty acid compositions of cyanobionts from Azolla caroliniana. Symbiosis 14:191–200; 1992.Google Scholar
  23. Cavigelli, M.A.; Robertson, G.P.; Klug, M.J. Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170:99–113; 1995.CrossRefGoogle Scholar
  24. Chan, M.; Himes, R.H.; Akagi, J.M. Fatty acid composition of thermophilic, mesophilic and psychrophilic clostridia. J. Bacteriol. 106:876–881; 1971.PubMedGoogle Scholar
  25. Christie, W.W. Lipid Analysis. Oxford: Pergamon Press; 1982.Google Scholar
  26. Christie, W.W. The composition, structure and function of lipids in tissues of ruminant animals. In: Christie, W.W., ed. Lipid Metabolism in Ruminant Animals. Oxford: Pergamon Press; 1981:p. 95–91.Google Scholar
  27. Chuecas, L.; Riley, J.P. Component fatty acids of the total lipids of some marine phytoplankton. J. Mar. Biol. Assn. U.K. 49:97–116; 1969.CrossRefGoogle Scholar
  28. Clarke, A.; Lesley, J.H.; Hopkins, C.C.E. Lipid in an Antarctic food chain: Calanus, Bolinopsis, Berne. Sarsia 72:41–48; 1987.Google Scholar
  29. Conte, M.H.; Thompson, A.; Eglinton, G. Primary production of lipid biomarker compounds by Emiliania huxleyi. Results from an experimental mesocosm study in fjords of Southwestern Norway. Sarsia 79:319–331; 1994.Google Scholar
  30. Cosper, C.I; Vining, L.C.; Ackman, R.G. Sources of cyclopropanoid fatty acids in the mummichog Fundulus heteroclitus. Mar. Biol. 78:139–146; 1984.CrossRefGoogle Scholar
  31. Cranwell, P.A.; Jaworski, G.H.M.; Bickley, H.M. Hydrocarbons, sterols, esters and fatty acids in six freshwater chlorophytes. Phytochemistry 29:145–151; 1990.CrossRefGoogle Scholar
  32. Cranwell, P.A.; Creghton, M.E.; Jaworski, G.H.M. Lipids of four species of freshwater chrysophytes. Phytochemistry 27:1053–1059; 1988.CrossRefGoogle Scholar
  33. Dadd, R.H. Essential fatty acids: insects and vertebrate compared. In: Mittler, T.E.; Dadd, R.H., eds. Metabolic Aspects of Lipids Nutrition in Insects. Boulder, CO: Westview Press; 1983:p. 107–147.Google Scholar
  34. DeLong, E.F.; Yayanos, A.A. Biochemical function and ecological significance of novel bacterial lipids in deep sea procaryotes. Appl. Environ. Microbiol. 51:730–737; 1986.PubMedGoogle Scholar
  35. Dembitsky, V.M.; Rozentsvet, O.A. Distribution of polar lipids in some marine, brackish and freshwater green macrophytes. Phytochemistry 41:483–488; 1996.CrossRefGoogle Scholar
  36. Desvilettes, C.; Bourdier, G.; Breton, J.C.; Combrouze, P. Fatty acids as organic markers for the study of trophic relationships in littoral cladoceran communities of a pond. J. Plankton Res. 16:643–659; 1994.CrossRefGoogle Scholar
  37. Dobson, G.; Ward, D.M., Robinson, N.; Eglinton, G. Biogeochemistry of hot spring environments: extractable lipids of cyanobacterial mats. Chem. Geol. 68:155–179; 1988.CrossRefGoogle Scholar
  38. Douce, R.; Joyard, J.; Block, M.A.; Dorne, A-J.; Harwood, J.L.; Bowyer, J.R. Glycolipid analyses and synthesis in plastids. In: Harwood, J.L.; Bowyer, J.R., eds. Methods in Plant Biochemistry. vol.4. 1990:p. 471–503.Google Scholar
  39. Dunlop-Jones, N.; Jialing, H.; Allen, L.H. An analysis of the acetone extractives of the wood and bark from fresh trembling aspen:implications for deresination and pitch control. J. Pulp Paper Sci. 17:J60—J66; 1991.Google Scholar
  40. Findlay, R.H.; Dobbs, F.C. Quantitative description of microbial communities using lipid analysis. In: Kemp, P.F.; Sherr, B.F.; Sherr, E.B.; Cole, J.J., eds. Aquatic Microbial Ecology. Boca Raton, FL: Lewis Publisher; 1993a:p. 271–284.Google Scholar
  41. Findlay, R.H.; Dobbs, F.C. Analysis of microbial lipids to determine biomass and detect the response of sedimentary microorganisms to disturbance. In: Kemp, P.F.; Sherr, B.F.; Sherr, E.B.; Cole, J.J., eds. Aquatic Microbial Ecology. Boca Raton, FL: Lewis Publisher; 1993b:p. 347–358.Google Scholar
  42. Fredrickson, H.L.; Cappenberg, T.E.; Leeuw, J.W. Polar lipid ester-linked fatty acids com-position of Lake Vechten seston: an ecological application of lipid analysis. FEMS Microbiol. Ecol. 38:381–396; 1986.CrossRefGoogle Scholar
  43. Fukushima, K; Kondo, H.; Sakata, S. Geochemistry of hydroxy acids in sediments. 1. Some freshwater and brackish water lakes in Japan. Organic Geochem. 18:913–922; 1992.CrossRefGoogle Scholar
  44. Galliard, T. Degradation of acyl lipids: hydrolytic and oxidative enzymes. In: Stumpf, P.K., ed. The Biochemistry of Plants. Lipids: Structure and Function. New York: Academic Press; 1980:p. 85–119.Google Scholar
  45. Gonzalez-Baro, M.; Pollero. R.J. Lipid characterization and distribution among tissues of the freshwater crustacean Macrobrachium borellii during an annual cycle. Comp. Biochem Physiol. 91B:711–715; 1988.Google Scholar
  46. Gillan, F.T.; Johns, R.B. Chemical markers for marine bacteria: fatty acids and pigments. In: Johns, R.B., ed. Biological Markers in the Sedimentary Record. Methods in Geochemistry and Geophysics, vol. 8. Amsterdam: Elsevier; 1986:p. 291–309.Google Scholar
  47. Goodloe, R.S.; Light, R.J. Structure and composition of hydrocarbons and fatty acids from a marine blue-green Synechococcus sp. Biochem. Biophys. Acta 710:485–492; 1982.CrossRefGoogle Scholar
  48. Grisley, M.S., Boyle, P.R. A new application of serological techniques to gut content analysis. J. Exp. Mar. Biol. Ecol. 90:1–9; 1985.CrossRefGoogle Scholar
  49. Haack, S.K.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 60:2483–2493; 1994.PubMedGoogle Scholar
  50. Hama, T.; Matsunaga, K.; Handa, N.; Takahashi, M. Fatty acid composition in photosynthetic products of natural phytoplankton population in Lake Biwa, Japan. J. Plankton Res. 14:1055–1065: 1992.CrossRefGoogle Scholar
  51. Hanson, B.J.; Cummings, K.W.; Cargill, A.S.; Lowry, R.R. Lipid content, fatty acid composition, and the effect of diet on fats of aquatic insects. Comp. Biochem. Physiol. 80B:257–276; 1985.Google Scholar
  52. Henderson, R.J.; Sargent, J.R. Lipid biosynthesis in rainbow trout, Salmo gairdnerii, fed diets of differing lipid content. Comp. Biochem. Physiol. 69C:31–37; 1981.Google Scholar
  53. Henderson, R.J.; Tocher, R.D. The lipid composition and biochemistry of freshwater fish.Prog. Lipid Res. 26:281–347; 1987.PubMedCrossRefGoogle Scholar
  54. Holton, R.W.; Blecker, H.H.; Stevens, T.S. Fatty acids in blue-green algae, possible relationships to phylogenetic position. Science 160:545–547; 1968.PubMedCrossRefGoogle Scholar
  55. Joseph, J.D. Identification of 3,6,9,12,15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates. Lipids 10:395–403; 1977.CrossRefGoogle Scholar
  56. Kaitaranta, J.K.; Linko, R.R. Fatty acid in the roe lipids of common food fishes. Comp. Biochem. Physiol. 79B:331–334; 1984.Google Scholar
  57. Käkelä, R. Fatty acid compositions in subspecies of ringed seal (Phoca hispida) and several semiaquatic mammals: site-specific and dietary differences. Ph.D. thesis, University of Joensuu, Finland; 1996.Google Scholar
  58. Käkelä, R.; Hyvärinen, H. Fatty acids in extremity tissues of Finnish beavers (Castor canadensis and Castor fiber) and muskrats (Ondatra zibethicus). Comp. Biochem. Physiol. 113B:113–124; 1996.Google Scholar
  59. Käkelä, R.; Hyvärinen, H.; Vainiotalo, P. Unusual fatty acids in the depot fat of the Canadian Beaver (Castor canadensis). Comp. Biochem. Physiol. 113B:625–629; 1996.Google Scholar
  60. Käkelä, R.; Ackman, R.G.; Hyvärinen, H. Very long chain polyunsaturated fatty acids in the blubber of ringed seals (Phoca hispida sp.) from Lake Saimaa, Lake Ladoga, the Baltic Sea, and Spitsbergen. Lipids 30:725–731; 1995.PubMedCrossRefGoogle Scholar
  61. Käkelä, R.; Hyvärinen, H.; Vainiotalo, P. Fatty acid composition in liver and blubber of the Saimaa ringed seal (Phoca hispida saimensis) compared with that of the ringed seal (Phoca hispida botnica) and grey seal (Halichoerus grypus) from the Baltic. Comp. Biochem. Physiol. 105B:553–565; 1993.Google Scholar
  62. Kates, M.; Volcani, B.E. Lipid compositions of diatoms. Biochim. Biophys. Acta 116:264278; 1966.Google Scholar
  63. Kawamura, K.A.; Kaplan, I.R. Organic compounds in the rainwater of Los Angeles. Environ. Sci. Technol. 17:497–501; 1983.PubMedCrossRefGoogle Scholar
  64. Kawamura, K.; Ishiwatari, R; Ogura, K. Early diagenesis of organic matter in the water column and sediments: microbial degradation and resynthesis of lipids in Lake Haruna. Org. Geochem. 11:251–264; 1987.CrossRefGoogle Scholar
  65. Kenyon, C.N. Fatty acid composition of unicellular strains of blue-green algae. J. Bacteriol. 109:827–834; 1972.PubMedGoogle Scholar
  66. Kenyon, C.N.; Rippka, R.; Stainier, R.Y. Fatty acid composition and physiological proper-ties of some filamentous blue-green algae. Arch. Microbiol. 83:216–236; 1972.Google Scholar
  67. Komagata, K.; Suzuki, K-I. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol. 19:161–207; 1987.CrossRefGoogle Scholar
  68. Landry, W.L. Identification of Vibrio vulnificus by cellular fatty acid composition using the Hewlett-Packard 5898A microbial identification system: collaborative study. J. AOAC Int. 77:1492–1499; 1994.PubMedGoogle Scholar
  69. Lechevalier, H.; Lechevalier, M.P. Chemotaxonomic use of lipids—an overview. In: Ratledge, C.; Wilkinson, S.G., eds. Microbial Lipids. New York: Academic Press; 1988:p. 869–902.Google Scholar
  70. Lechevalier, M.P. Lipids in bacterial taxonomy. In: Laskin, A.I.; Lechevalier, H.A., eds. CRC Handbook of Microbiology. Boca Raton, FL: CRC Press, Inc.; 1982:p. 435–541.Google Scholar
  71. Leger, C.; Fremont, L.; Boudon, M. Fatty acid composition of the lipids in the trout—I. Influence of dietary fatty acids on the triglyceride fatty acid desaturation in serum, adipose tissue, liver, white and red muscle. Comp. Biochem. Physiol. 69B:99–105; 1981.Google Scholar
  72. Linko, R.R.; Rajasilta, M.; Hiltunen, R. Comparison of lipids and fatty acids composition in vendace (Coregonus albula L.) and available plankton feed. Comp. Biochem. Physiol. 103A:205–212; 1992.CrossRefGoogle Scholar
  73. McIntire, C.D.; Tinsley, I.J. Lowry, R.R. Fatty acids in lotic periphyton: another measure of community structure. J. Phycol. 5:26–32; 1969.CrossRefGoogle Scholar
  74. Mancuso, C.A.; Franzmann, P.D.; Burton, H.R.; Nichols, P.D. Microbial community structure and biomass estimate of a methanogenic Antarctic lake ecosystem as determined by phospholipid analyses. Microb. Ecol. 19:73–95; 1990.CrossRefGoogle Scholar
  75. Mermoud, F.; Clerc, C.; Guelacar, F.O.; Buchs, A. Free fatty acids and sterols in the plankton of Lake Leman. Arch. Sci. Genève 34:367–374; 1981.Google Scholar
  76. Meyers, P.A.; Ishiwatari, R. Lacustrine organic geochemistry—an overview if indicators of organic matter sources and diagenesis in lake sediments. Organic Geochem. 20:867–900; 1993.CrossRefGoogle Scholar
  77. Meyers, P.A.; Leenheer, M.J.; Eadie, B.J.; Maule, S.J. Organic geochemistry of suspended and settling particulate matter in Lake Michigan. Geochim. Cosmochim. Acta 48:443–452; 1984.CrossRefGoogle Scholar
  78. Miyazaki, T. Compositional changes of fatty acids in particulate matter and water temperature, and their implications to the seasonal succession of phytoplankton in a hypereutrophic lake, Lake Kasumigaura, Japan. Arch. Hydrobiol. 99:1–14; 1983.Google Scholar
  79. Miyazaki, T.; Irie, J.; Ogawa, T.; Ichimura, S.E. Fatty acids in lipids from particulate organic matter in a eutrophie lake, Lake Nakanuma, Japan. Int. Rev. Ges. Hydrobiol. 71:101–113; 1986.CrossRefGoogle Scholar
  80. Moss, C.W. The use of cellular fatty acids for identification of microorganisms. In: Fox, A.; Morgan, S.L.; Larson, L.; Odham, G., eds. Analytical Microbiology Methods. Chromatography and Mass Spectrometry. New York: Plenum Press; 1990:p. 59–69.Google Scholar
  81. Muje, P.; Agren, J.J.; Lindqvist, O.V.; Hanninen, O. Fatty acid composition of Vendace (Coregonus alhula L.) muscle and its plankton fed. Comp. Biochem. Physiol. 92B:75–79; 1989.Google Scholar
  82. Murata, N.; Wada, H.; Gombos, Z. Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol. 33:933–941; 1992.Google Scholar
  83. Napolitano, G.E.; Shantha, N.C.; Hill, W.R.; Luttrell, A.E. Lipid and fatty acid compositions of stream periphyton and stoneroller minnows (Campostoma anomalum): trophic and environmental implications. Arch. Hydrobiol. 137:211–225; 1996.Google Scholar
  84. Napolitano, G.E.; Heras, H.; Stewart, A.J. Fatty acid composition of freshwater phy-toplankton during a red tide event. Biochem. Syst. Ecol. 23:65–69; 1995.CrossRefGoogle Scholar
  85. Napolitano, G.E. The relationship of lipids with light and chlorophyll measurements in freshwater algae and periphyton. J. Phycol. 30:943–950; 1994.CrossRefGoogle Scholar
  86. Napolitano, G.E.; Hill, W.R.; Guckert, J.B.; Stewart, A.J.; Nold, S.C.; White, D.C. Changes in periphyton fatty acid composition in chlorine polluted streams. J. North Am. Benthol. Soc. 13:237–249; 1994.CrossRefGoogle Scholar
  87. Napolitano, G.E.; Ratnayake, W.N.M.; Ackman, R.G. All-cis-3,6.9, l 2,15-octadecapentaenoic acid: a problem of resolution in the GC analysis of marine fatty acids. Phytochemistry 27:1751–1755; 1988.CrossRefGoogle Scholar
  88. Nevenzel, J. Biogenic hydrocarbons in marine organisms. In: Ackman, R.G., ed. Marine Biogenic Lipids, Fats and Oils. Boca Raton, FL: CRC Press; 1989:p. 3–71.Google Scholar
  89. Nichols, B.W. Light-induced changes in the lipids of Chlorella vulgaris. Biochim. Biophys. Acta 106:274–279; 1965.PubMedCrossRefGoogle Scholar
  90. Nichols, B.W.; Appleby. R.S. The distribution and synthesis of arachidonic acid in algae. Phytochemistry 8:1907–1915; 1969.CrossRefGoogle Scholar
  91. Nichols, B.W.; Wood, B.J.B.; James, A.T. The occurrence and biosynthesis of gammalinolenic acid in a blue-green algae Spirulina platensis. Lipids 3:46–50; 1968.PubMedCrossRefGoogle Scholar
  92. Nichols, P.D.; Klump, D.W.; Johns, R.B. Lipid components and utilization in consumers of a seagrass community: an indicator of carbon source. Comp. Biochem. Physiol. 83B:103–113; 1986.Google Scholar
  93. Orcutt, D.M.; Parker, B.C.; Lusby, W.R. Lipids of blue-green algal mats (modern stromatolites) from Antarctic Oasis Lakes. J. Phycol. 22:523–530; 1986.CrossRefGoogle Scholar
  94. Patterson, G.W. Sterols of algae. In: Patterson, G.W.; Nes, W.D., eds. Physiology and Biochemistry of Sterols. Champaign, IL: American Oil Chemists’ Society; 1991:p. 118–157.Google Scholar
  95. Parker, P.L.; Van Baalen, C.; Maurer, L. Fatty acids of eleven species of blue-green algae: geochemical significance. Science 155:707–708; 1967.PubMedCrossRefGoogle Scholar
  96. Parkes, R.J. Analysis of microbial communities within sediments using biomarkers. In: Fletcher, M.; Gray, T.R.G.; Jones, J.G., eds. Ecology of Microbial Communities. London: Cambridge University Press; 1987:p. 147–177.Google Scholar
  97. Parrish, C.C.; DeFreitas, A.S.W.; Bodennec, G.; MacPherson, E.J.; Ackman, R.G. Lipid composition of the toxic marine diatom, Nitzschia pungens. Phytochemistry 30:113–116; 1991.CrossRefGoogle Scholar
  98. Peng, A.C. Fatty acids in vegetables and vegetable products. In: Chow, C.K., ed. Fatty Acids in Foods and Their Health Implications. New York: Marcel Decker; 1992:p. 185–236.Google Scholar
  99. Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18:293–320; 1987.CrossRefGoogle Scholar
  100. Petkov, G.D.; Furnadzieva, S.T. Non-polar lipids of some microalgae. Arch. Hydrobiol. 96:79–84; 1993.Google Scholar
  101. Pimm, S.L.; Lawton, J.H.; Cohen, J.E. Food web patterns and their consequences. Nature 350:669–674; 1991.CrossRefGoogle Scholar
  102. Pohl, P.; Zurheide, F. Fat production in freshwater and marine algae. In: Marine Algae in Pharmaceutical Science. New York: Walter de Gruyter; 1982:p. 64–80.Google Scholar
  103. Ratledge, C.; Wilkinson, S.G. Microbial Lipids. London, Academic Press; 1988.Google Scholar
  104. Ray, P.H.; White, D.C.; Brock, T.D. Effect of temperature on the fatty acid composition of Thermus aquaticus. J. Bacteriol. 106:25–30; 1971.PubMedGoogle Scholar
  105. Rezanka, T. Very long chain fatty acids from the animal and plant kingdoms. Prog. Lipid Res. 28:147–187; 1989.PubMedCrossRefGoogle Scholar
  106. Rhead, M.M.; Eglinton, G.; Draffan, G.H.; England, P.J. Conversion of oleic acid to saturated fatty acids in seven estuary sediments. Nature 232:327–330; 1971.PubMedCrossRefGoogle Scholar
  107. Rieman, B. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl. Environ. Microbiol. 50:187–193; 1985.Google Scholar
  108. Ringo, E.; Jostensen, J.P.; Olsen, R.E. Production of eicosapentaenoic acid by freshwater Vibrio. Lipids 27:564–566; 1992.CrossRefGoogle Scholar
  109. Sabot, A.; Laureillard, J.; Scribe, P.; Sicre, M.A. Evolutionary trends in the lipid biomarker approach for investigating the biogeochemistry of organic matter in the marine environment. Mar. Chem. 36:233–248; 1991.Google Scholar
  110. Sargent, J.R. The structure, metabolism and function of lipids in marine organisms. In: Malins, D.; Sargent, J.R., eds. Biochemical and Biophysical Perspectives in Marine Biology. New York: Academic Press; 1976:p. 149–212.Google Scholar
  111. Scholz, O.; Boon, P.I. Biofilms on submerged River Red gum (Eucalyptus camaldulensis Dehnh, Myrtaceae) wood in billabongs: an analysis of bacterial assemblages using phospholipid profiles. Hydrobiologia 259:169–178; 1993.CrossRefGoogle Scholar
  112. Sicko-Goad, L.; Simmons, M.L.; Lazinsky, D.; Hall, J. Effect of light cycle on diatom fatty acid composition and quantitative morphology. J. Phycol. 24:1–7; 1988.CrossRefGoogle Scholar
  113. Smith, P.F. Archaebacteria and other specialized bacteria. In: Microbial Lipids. London: Academic Press; 1988:p. 489–547.Google Scholar
  114. Smith, R.J.; Hobson, K.A.; Koopman, H.N.; Lavigne, D.M. Distinguishing between populations of fresh-and salt-water harbour seals (Phoca vitulina) using stable-isotope ratios and fatty acid profiles. Can. J. Fish. Aquat. Sci. 53:272–279; 1996.CrossRefGoogle Scholar
  115. Stead, D.E.; Sellwood, J.E.; Wilson, J.; Viney, I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J. Appl. Bacteriol. 72:315–321; 1992.CrossRefGoogle Scholar
  116. Steinman, A.D.; McIntire, C.D.; Lowry, R.R. Effects of irradiance and age on the chemical constituents of algal assemblages in laboratory streams. Arch. Hydrobiol. 114:45–61; 1988.Google Scholar
  117. Tunlid, A.; White, D.C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Stotzky, G.; Bollag J-M., eds. Soil Biochemistry. New York. Marcel Decker; 1992:p. 229–262.Google Scholar
  118. Vainshtein, M.; Hippe, H.; Kroppenstedt, J. Cellular fatty acid composition of Desul-fovibrio species and its use in classification of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15:554–566; 1992.Google Scholar
  119. Vechtel, B.; Eichenberger, W.; Ruppel, H.G. Lipid bodies in Eremosphaera viridis De Bary (Chlorophyceae). Plant Cell Physiol. 33:41–48; 1992.Google Scholar
  120. Volkman, J.K.; Burton, H.R.; Everitt, D.A.; Allen, D.I. Pigment and lipid compositions of algal and bacterial communities in Ace Lake, Vestfold Hills, Antarctica. Hydrobiologia 165:41–57; 1988.CrossRefGoogle Scholar
  121. Volkman, J.K.; Smith, D.J.; Eglinton, G.; Forsberg, T.E.; Corner, D.S.E. Sterol and fatty acid composition of four marine Haptophycean algae. J. Mar. Biol. Assn. U. K. 61:509–517; 1981.CrossRefGoogle Scholar
  122. Wakeham, S.G.; Canuel, E.A. Fatty acids and sterols of particulate matter in a brackish and seasonally anoxic coastal salt pond. Adv. Organic Geochem. 16:703–713; 1990.CrossRefGoogle Scholar
  123. Ward, D.M.; Brassell, S.C.; Eglinton, G. Archaebacterial lipids in hot-spring microbial mats. Nature 318:656–659; 1985.CrossRefGoogle Scholar
  124. White, D.C. Chemical ecology: possible linkage between macro-and microbial ecology. Oikos 74:177–184: 1995.CrossRefGoogle Scholar
  125. White, D.C. Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Arch. Hydrobiol. Beih. Ergebn. Limnol. 31:1–18; 1988.Google Scholar
  126. White, D.C.; Davis, W.M.; Nickes, J.S.; King, J.D.; Bobbie, R.J. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecology 40:51–62; 1979.CrossRefGoogle Scholar
  127. Wood, B.J.B. Lipids of algae and protozoa. In: Ratledge, G.; Wilkinson, S.G., eds. Microbial Lipids. New York: Academic Press; 1988:p. 807–865.Google Scholar
  128. Wood, B.J.B. Fatty acids and saponifiable lipids. In: Stewart, W.D.P., ed. Biochemistry and Physiology of Algae. Berkeley: University of California Press; 1974:p. 236–265.Google Scholar
  129. Zeng, Y.B.; Ward, D.M.; Brassell, C.; Eglinton, G. Biogeochemistry of hot spring environments. 2. Lipid compositions of Yellowstone (Wyoming, U.S.A.) cyanobacterial and Chloroflexus mats. Chem. Geol. 95:327–345; 1992a.CrossRefGoogle Scholar
  130. Zeng, Y.B.; Ward, D.M.; Brassell, S.C.; Eglinton, G. Biogeochemistry of hot spring environments. 3. Apolar and polar lipid in the biologically active layers of a cyanobacterial mat. Chem. Geol. 95:347–360; 1992b.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Guillermo E. Napolitano

There are no affiliations available

Personalised recommendations