Influence of Lipids on the Bioaccumulation and Trophic Transfer of Organic Contaminants in Aquatic Organisms

  • Peter F. Landrum
  • Susan W. Fisher

Abstract

In aqueous systems, organisms are exposed to contaminants via multiple routes (Fig. 9.1). The extent of contaminant accumulation ultimately depends on the extent and mode of interaction with diverse contaminated media. The influence of lipids on contaminant uptake likewise varies according to the route by which the exposure takes place and the lipophilic character of the contaminant. Thus, it is necessary to clarify the environmental sources of contaminants for accumulation. The means by which contaminants, once accumulated, can be eliminated from an organism can also depend on organism lipid content. This elimination can be modified by the route, contaminant lipophilicity, and extent of contamination of the environmental compartment into which elimination occurs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arts, M.T.; Headley, J.V.; Peru, K.M. Persistence of herbicide residues in Gammarus lacustris (Crustacea: Amphipoda) in prairie wetlands. Environ. Toxicol. Chem. 15:481–488; 1996.Google Scholar
  2. Arts, M.T.; Ferguson, M.E.; Glozier, N.E.; Robarts, R.D.; Donald, D.B. Spatial and temporal variability in lipid dynamics of common amphipods: assessing the potential for uptake of lipophilic contaminants. Ecotoxicology 4:91–113; 1995.CrossRefGoogle Scholar
  3. Axelman, J.; Broman, D.; Naf, C.; Pettersen, H. Compound dependence of the relationship log K os, and log BCFL. Environ. Sci. Pollut. Res. 2:33–36; 1995.Google Scholar
  4. Banerjee, S.; Baughman, G.L. Bioconcentration factors and lipid solubility. Environ. Sci. Technol. 25:536–539; 1991.CrossRefGoogle Scholar
  5. Barron, M.G.,Bioconcentration. Environ. Sci. Technol. 24:1612–1618; 1990.CrossRefGoogle Scholar
  6. Bickel, M.H.,The role of adipose tissue in the distribution and storage of drugs. Prog. Drug Res. 28:273–303; 1994.Google Scholar
  7. Biddinger, G.R.; Gloss, S.P. The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic systems. Residue Rev. 91:103–145; 1984.PubMedCrossRefGoogle Scholar
  8. Bierman, V.J.,Equilibrium partitioning and biomagnification of organic chemicals in benthic animals. Environ. Sci. Technol. 24:1407–1412; 1990.CrossRefGoogle Scholar
  9. Bishop, C.A.; Brown, G.P.; Brooks, R.J.; Lean, D.R.S.; Carey, J.H. Organochlorine contaminant concentrations and their relationship to the body size and clutch characteristics of the female common snapping turtle in Lake Ontario, Canada. Arch. Environ. Contam. Toxicol. 27:82–87; 1994.Google Scholar
  10. Bishop, C.A.; Brooks, R.J.; Carey, J.H.; Ng, P.; Norstrom, R.J.; Lean, D.R.S.,The case for cause—effect linkage between environmental contamination and development in eggs of the common snapping turtle from Ontario, Canada. J. Toxicol. Environ. Health 33:521–547; 1991.PubMedCrossRefGoogle Scholar
  11. Bligh, E.G.; Dyer, W.J.,A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 39:911–917; 1959.CrossRefGoogle Scholar
  12. Brannon J.M.; Price, C.B.; Reiley, F.J., Jr., Pennington, J.C.; McFarland, V.A. Effects of sediment organic carbon on distribution of radiolabeled fluoranthene and PCBs among sediment, interstitial water and biota. Bull. Environ. Contam. Toxicol. 51:873–880; 1993.PubMedCrossRefGoogle Scholar
  13. Broman, D.; Näf, C.; Rolff, C.; Zebühr, R.; Fry, B.; Hobbie, J. Using ratios of stable nitrogen isotopes to estimate bioaccumulation and flux of polyclorinated dibenzop-dioxins (PCDDs) and dibenzofurans (PCDFs) in two food chains from the northern Baltic. Environ. Toxicol. Chem. 11:331–345; 1992.Google Scholar
  14. Bruger, J.; Gochfeld, M. Lead and cadmium accumulation in eggs and fledgling seabirds in the New York Bight. Environ. Toxicol. Chem. 12:261–267; 1993.Google Scholar
  15. Bruggerman, W.A.; Martron, L.B.J.M.; Koolman, D.; Hutzinger, O. Accumulation and elimination kinetics of di-, tri-, and tetrachlorobiphenyls by goldfish after dietary and aqueous exposure. Chemosphere 10:811–815; 1981.CrossRefGoogle Scholar
  16. Bruner, K.A.; Fisher, S.W.; Landrum, P.F. The role of the zebra mussel, Dreissena polymorpha, in contaminant cycling. I. The effect of body size and lipid content on the bioconcentration of PCBs and PAHs. J. Great Lakes Res. 20:725–734; 1994a.CrossRefGoogle Scholar
  17. Bruner, K.A.; Fisher, S.W.; Landrum, P.F. The role of the zebra mussel, Dreissena polymorpha, in contaminant cycling. II. Contaminant accumulation from ingested algal and suspended sediment particles and contaminant trophic transfer from zebra mussel feces to the benthic invertebrate, Gammarus,fasciatus. J. Great Lakes Res. 20:735–750; 1994b.CrossRefGoogle Scholar
  18. Burns, K.A.; Teal, J.M. The West Falmouth oil spill: hydrocarbons in the salt marsh ecosystem. Est. Coastal Mar. Sci. 8:349–360; 1979.Google Scholar
  19. Burrows, LG.; Whitton, B.A. Heavy metals in water, sediments and invertebrates from a metal contaminated river free of organic pollution. Hydrobiologia 106:263–273; 1983.CrossRefGoogle Scholar
  20. Chen, S.W.; Dzuik, P.J.; Francis, B.M. Effect of four environmental toxicants on plasma Ca and estradiol 17B and hepatic P450 in laying hens. Environ. Toxicol. Chem. 13:789795; 1994.Google Scholar
  21. Chiou, C.T.; Freed, V.H.; Schmedding, D.W.; Kohnert, R.L.,Partition coefficient and bioac-cumulation of selected organic chemicals. Environ. Sci. Technol. 11:475–478; 1977.CrossRefGoogle Scholar
  22. Clark, K.E.; Mackay, D.,Dietary uptake and biomagnification of four chlorinated hydrocar-bons by guppies. Environ. Toxicol. Chem. 10:1205–1217; 1991.CrossRefGoogle Scholar
  23. Connell, D.W.,Bioaccumulation behavior of persistent organic chemicals with aquatic organisms. Rev. Environ. Contam. Toxicol. 101:117–154; 1988.CrossRefGoogle Scholar
  24. Cravedi, J.P.; Tulliez, J.,Metabolism of n-alkanes and their incorporation into lipids in rainbow trout. Environ. Res. 39:180–187; 1986.PubMedCrossRefGoogle Scholar
  25. de Boer, J. Chlorobiphenyls in bound and non-bound lipids of fishes: comparison of different extraction methods. Chemosphere 17:1803–1810; 1988.CrossRefGoogle Scholar
  26. DiPinto, L.M.; Coull, B.C.; Chandler, G.T.,Lethal and sublethal effects of sediment-associated PCB Arochlor 1254 on a meiobenthic copepod. Environ. Toxicol. Chem. 12:1909–1918; 1993.CrossRefGoogle Scholar
  27. DiToro, D.M.; Zarba, C.S.; Hansen, D.J.; Berry, W.J.; Swartz, R.C.; Cowan, C.E.; Pavlou, S.P.; Allen, H.E.; Thomas, N.A.; Paquin, P.R. Technical basis for establishing sediment quality criteria for nonionic organic chemicals by using equilibrium partitioning. Environ. Toxicol. Chem. 12:1541–1583; 1991.Google Scholar
  28. Ellis, G.S.; Huckins, J.N.; Rostad, C.E.; Schmitt, C.J.; Petty, J.D.; MacCarthy, P. Evaluation of lipid-containing semipermeable membrane devices for monitoring organochlorine contaminants in the Upper Mississippi River. Environ. Toxicol. Chem. 14:1875–1884; 1995.Google Scholar
  29. Ewald, G.,Role of lipids in the fate of organochlorine compounds in aquatic ecosystems.Doctoral dissertation, Department of Ecology, Lund University, Lund, Sweden; 1996.Google Scholar
  30. Ewald, G.; Larsson, P.,Partitioning of 14C-labelled 2,2’, 4,4’-tetrachlorobiphenyl between water and fish lipids. Environ. Toxicol. Chem. 13:1577–1580; 1994.Google Scholar
  31. Fisher, S.W.; Gossiaux, D.C.; Bruner, K.A.; Landrum, P.F. Investigations of the toxicokinetics of hydrophobic contaminants in the zebra mussel (Dreissena polymorpha). In: Nalepa, T.F.; Schloesser, D.W., eds. Zebra Mussels: Biology, Impacts and Control. Boca Raton, FL: CRC Press; 1993:p. 453–464.Google Scholar
  32. Folch, J.; Lees, M.; Cloane Stanley, G.H.,A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509; 1957.PubMedGoogle Scholar
  33. Gardner, W.S.; Landrum, P.F.; Chandler, J.F. Lipid-partitioning and disposition of benzo(a)pyrene and hexachlrorbiphenyl in Lake Michigan, Pontoporeia hoyi. Environ. Toxicol. Chem. 10:35–46; 1990.Google Scholar
  34. Gardner, W.S.; Frez, W.A.; Cichocki, E.A.; Parrish, C.C. Micromethod for lipids in aquatic invertebrates. Limnol. Oceanogr. 30:1100–1105; 1985.Google Scholar
  35. Geyer, H.J.; Scheunert, I.; Bruggeman, R.; Matthies, M.; Steinberg, C.E.W.; Zitko, V.; Kettrup, A.; Garrison, W. The relevance of aquatic organisms lipid content to the toxicity of lipophilic chemicals: toxicity of lindane to different fish species. Ecotoxicol. Environ. Safety 28:53–70; 1994.CrossRefGoogle Scholar
  36. Geyer, H.J.; Scheunert, I.: Rapp, K.; Gebefugi, I.; Steinberg, C.; Kettrup, A.,The relevance of fat content in toxicity of lipophilic chemicals to terrestrial animals with special reference to dieldrin and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Ecotoxicol. Environ. Safety 26:45–60; 1993.CrossRefGoogle Scholar
  37. Gobas, F.A.P.C.; Mackay, D. Dynamics of hydrophobic organic chemical bioconcentration in fish. Environ. Toxicol. Chem. 6:495–504; 1987.Google Scholar
  38. Gobas, F.A.P.C.; Zhang, X.; Wells, R. Gastrointestinal magnification: the mechanism of biomagnification and food chain accumulation of organic chemicals. Environ. Sci. Technol. 27:2855–2864; 1993a.CrossRefGoogle Scholar
  39. Gobas, F.A.P.C.; McCorquodale, J.R.; Haffner, G.D.,Intestinal absorption and biomagnification of organochlorines. Environ. Toxicol. Chem. 12:567–577; 1993b.CrossRefGoogle Scholar
  40. Gobas, F.A.P.C.; McNeil, E.J.; Lovett-Doust, L.; Haffner, G.D. Bioconcentration of chlori-nated aromatic hydrocarbons in aquatic macrophytes. Environ. Sci. Technol. 25:924–929; 1991.CrossRefGoogle Scholar
  41. Gobas, F.A.P.C.; Clark, K.E.; Shiu, W.Y.; Mackay, D. Bioconcentration of polybrominated benzenes and biphenyls and related superhydrophobic chemicals in fish: role of bioavailability and fecal elimination. Environ. Toxicol. Chem. 8:231–247; 1989.Google Scholar
  42. Hákansson, H.; Sudlin, P.; Andersson, T.; Brunström, B.; Dencker, L.; Engwall, M.; Ewald, G.; Gilek, M.; Holm, G.; Honkassalo, S.; Idestam-Almquist, J.; Jonsson, P.; Kautsky, N.; Lundburg, G.; Lund-Kvernheim, A.; Martinsen, K.; Norrgren, L.; Pesonen, M.; Rundgren, M.; Sálberg, M.; Tarkpea, M.; Wesén, C.,In vivo and in vitro toxicity of fractionated fish lipids, with particular regard to their content of chlorinated organic compounds. Pharmacol. Toxicol. 69:344–345; 1991.CrossRefGoogle Scholar
  43. Hansen, L.G. Halogenated aromatic compounds. In: Hansen, L.G.; Shane, B.S., eds. Basic Environmental Toxicology. Ann Arbor, MI: CRC Press; 1994:p. 199–230.Google Scholar
  44. Harkey, G.A.; Landrum, P.F.; Kaline, S.J.,Comparison of whole sediment, elutriate, and porewater for use in assessing sediment-associated organic contaminants in bioaccumulation assays. Environ Toxicol. Chem. 13:1315–1329; 1994a.CrossRefGoogle Scholar
  45. Harkey, G.A.; Lydy, M.J.; Kukkonen, J.; Landrum, P.F. Feeding selectivity and assimila-tion of PAH and PCB in Diporeia spp. Environ. Toxicol. Chem. 13:1445–1455; 1994b.Google Scholar
  46. Harrison, H.L.; Loucks, O.L.; Mitchell, J.W.; Parkhurst, D.F.; Tracy, C.R.; Watts D.G.; Yannacone, V.J., Jr. System studies of DDT transport. Science 170:503–508; 1970.PubMedCrossRefGoogle Scholar
  47. Hawker, D.W.; Connell, D.W. Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol. Environ. Safety 11:184–197; 1986.CrossRefGoogle Scholar
  48. Heinz, G.H.,Selenium accumulation and loss in mallard eggs. Environ. Toxicol. Chem. 12:775–778; 1993.CrossRefGoogle Scholar
  49. Heinz, G.H.; Hoffamn, D.J.; Gold, L.G.,Impaired reproduction of mallards fed and organic form of selenium.,J. Wildl. Manage. 53:418–428; 1989.CrossRefGoogle Scholar
  50. Huckins, J.N.; Tubergen, M.W.; Manuweera, G.K. Semipermeable membrane devices containing model lipid: a new approach to monitoring and estimating their bioconcentration potential. Chemosphere 20:533–552; 1990a.CrossRefGoogle Scholar
  51. Huckins, J.N.; Tubergen, M.W.; Lebo, J.A.; Gale, R.W.; Schwartz, T.R. Polymeric film dialysis in organic solvent media for cleanup of organic contaminants. J. Assoc. Off. Anal. Chem. 73:290–293; 1990b.Google Scholar
  52. Hunn, J.B.; Allen, J.L. Movement of drugs across the gills of fishes. Annu. Rev. Pharmacol. 14:47–55; 1974.CrossRefGoogle Scholar
  53. Jarman, W.M.; Burns, S.A.; Chang, R.R.; Stephens, R.D.; Norstrom, R.J.; Simon, M.; Linthicum, J. Determination of PCDDs, PCDFs and PCBs in California peregrine falcons (Falco peregrinus) and their eggs. Environ. Toxicol. Chem. 12:105–114; 1993.Google Scholar
  54. Kaiser, K.L.E.; Vladmanis, I. Apparent octanol/water partition coefficients of pentachlorophenol as a function of pH. Can. J. Chem. 60:2104–2106; 1982.Google Scholar
  55. Kamp, J.D.; Neumann, H.G. Absorption of carcinogens into the thoracic duct lymph of the rat: aminostilbene derivatives and 3-methylchloanthrene. Xenobiotica 5:717–727; 1975. Kay, S.H. Cadmium in food webs. Residue Rev. 96:13–43; 1984.Google Scholar
  56. Kenega, E.E.,Correlation of concentration factors of chemicals in aquatic and terrestrial organism with their physical and chemical properties. Environ. Sci. Technol. 14:553–556; 1980.CrossRefGoogle Scholar
  57. Kuckuck, J.R.; Harvey, H.R.; Ostrom, P.H.; Ostrom, N.E.; Baker, J.E. Organochlorine dynamics in the pelagic food web of Lake Baikal. Environ. Toxicol. Chem. 15:13881400; 1996.Google Scholar
  58. Kucklick, J.R.; Bidelman, T.F.; McConnell, L.L.; Walla, M.D.; Ivanov, G.P. Organochlorines in the water and biota of Lake Baikal, Siberia. Environ. Sci. Technol. 28:31–37;1994.CrossRefGoogle Scholar
  59. Kukkonen, J.; Landrum, P.F. Distribution of organic carbon and organic xenobiotics among different particle-size fractions in sediments. Chemosphere 32:1063–1076; 1996.CrossRefGoogle Scholar
  60. Kukkonen, J.; Landrum, P.F. Effects of sediment-bound polydimethylsiloxane on the bioavailability and distribution of benzo(a)pyrene in lake sediment to Lumbriculus variegatus. Environ. Toxicol. Chem. 14:523–531; 1995.Google Scholar
  61. Laher, J.M.; Rigler, M.W.; Vetter, R.D.; Barrowman, J.A.; Patton, J.S.,Similar bioavailability and lymphatic transport of benzo(a)pyrene when administered to rats in different amounts of dietary fat. J. Lipid Res. 25:1337–1342; 1984.PubMedGoogle Scholar
  62. Lake, J.L.; Rubenstein, N.I.; Lee, H.II; Lake, C.A.; Heltshe, J.; Pavignano, S.,Equilibrium partitioning and bioaccumulation of sediment-associated contaminants by infaunal organisms. Environ. Toxicol. Chem. 9:1095–1106; 1990.CrossRefGoogle Scholar
  63. Lal, B.; Singh, T.P. Impact of pesticides on lipid metabolism in the freshwater catfish, Clarias batrachus, during the vitellogenic phase of its annual reproductive cycle. Ecotoxicol. Environ. Safety 13:13–23; 1987.CrossRefGoogle Scholar
  64. Landrum, P.F. Toxicokinetics of organic xenobiotics in the amphipod, Pontoporeia hovi: role of physiological and environmental variables. Aquat. Toxicol. 12:245–271; 1988.Google Scholar
  65. Landrum, P.F.; Dupuis, W.S. Toxicity and toxicokinetics of pentachlorophenol and carbaryl to Pontoporeia hovi and Mvsis relicta. In: Landis, W.G.; Van der Schalie, W. H., eds. Aquatic Toxicology and Risk Assessment, 13th vol. ASTM STP 1096. Philadelphia: American Society for Testing and Materials; 1990:p. 278–289.Google Scholar
  66. Landrum, P.F.; Faust, W.R. The role of sediment composition on the bioavailability of laboratory-dosed sediment-associated contaminants to the amphipod, Diporeia spp. Chem. Speciat. Bioavail. 6:85–92; 1994.Google Scholar
  67. Landrum, P.F.; Faust, W.R. Effect of variation in sediment composition on the uptake rate coefficient for selected PCB and PAH congeners by the amphipod, Diporeia spp. In: Mayes, M.A.; Barron, M.G., eds. Aquatic Toxicology and Risk Assessment, vol. 14. ASTM STP 1124. Philadelphia: American Society for Testing and Materials; 1991:p. 263–279.CrossRefGoogle Scholar
  68. Landrum, P.F.; Robbins, J.A. Bioavailability of sediment associated contaminants: a review and simulation model. In: Baudo, R.; Giesy, J.P.; Muntau, H., eds. Sediments: Chemistry and Toxicity of In-Place Pollutants. Chelsea, MI: Lewis Publishers; 1990:p. 237–263.Google Scholar
  69. Landrum, P.F.; Dupuis, W.S.; Kukkonen, J. Toxicity and toxicokinetics of sediment-associated pyrene in Diporeia spp.: examination of equilibrium partitioning theory and residue effects for assessing hazard. Environ. Toxicol. Chem. 13:1769–1780; 1994.Google Scholar
  70. Landrum, P.F.; Lee, H.; Lydy, M.J. Toxicokinetics in aquatic systems: model comparisons and use in hazard assessment. Environ. Toxicol. Chem. 11:1709–1725; 1992.Google Scholar
  71. Landrum, P.F.; Eadie, B.J.; Faust, W.R. Toxicokinetics and toxicity of a mixture of sediment-associated polycyclic aromatic hydrocarbons to the amphipod Diporeia spp. Environ. Toxicol. Chem. 10:35–46; 1991.Google Scholar
  72. Lassiter, R.R.; Hallam, T.G. Survival of the fattest: Implications for acute effects of lipophilic chemicals on aquatic populations. Environ. Toxicol. Chem. 9:585–595; 1990.Google Scholar
  73. LeBlanc,G.A.,Trophic level differences in bioconcentration of chemicals: Implications in assessing environmental biomagnification. Environ. Sci. Technol. 29:154–160;1995.CrossRefGoogle Scholar
  74. Lee, H., II. Models, muddles and mud: predicting bioaccumulation of sediment associated pollutants. In: Burton, G.A., ed. Sediment Toxicity Assessment. Ann Arbor, MI: Lewis Publishers; 1992:p. 73–94.Google Scholar
  75. Leo, A.; Hansch, C.; Elkins, D.,Partition coefficients and their uses. Chem. Rev. 71:525–616; 1971.CrossRefGoogle Scholar
  76. Lien, G.J.; McKim, J.M. Predicting branchial and cutaneous uptake of 2,5,2’,5’-14tetrachlorobiphenyl in fathead minnows (Pimephales promelas) and Japanese medaka (Oryzias latipes): rate limiting factors. Aquat. Toxicol. 27:15–32; 1993.Google Scholar
  77. Lien, G.J.; Nichols, J.W.; McKim, J.M.; Gallinat, C.A. Modeling the accumulation of three waterborne chlorinated ethanes in fathead minnows (Pimephales promelas): a physiologically based approach. Environ. Toxicol. Chem. 13:1195–1205; 1994.Google Scholar
  78. Loganathan, B.; Kannan, K.; Watanabe, I.; Kawano, M.; Irvine, K.; Kumar, S.; Sikka, H. Isomer-specific determination and toxic evaluation of polychlorinated biphenyls and dioxins. Environ. Sci. Technol. 29:1832–1838; 1995.CrossRefGoogle Scholar
  79. Ma, L.; Taraschi, T.F.; Janes, N. Nuclear magnetic resonance partitioning studies of solute action in lipid membranes. Bull. Mag. Reson. 14:293–98; 1992.Google Scholar
  80. McCarty, L.S.; Mackay, D. Enhancing ecotoxicological modeling and assessment. Environ. Sci. Technol. 27:1719–1728; 1993.CrossRefGoogle Scholar
  81. Macek, K.J.; Petrocelli, S.R.; Sleight, B.H., III. Consideration in assessing the potential for and significance of, biomagnification of chemical residues in aquatic foodchains. In: McFarland, V.A. Activity-based evaluation of potential bioaccumulation from sediments. In: Montgomery, R.L.; Leach, J.W., eds. Dredging and Dredged Material Disposal Proceedings of the Conference Dredging `84. New York: American Society of Civil Engineering; 1984:p. 461–466.Google Scholar
  82. McFarland, V.A.; Clark, J.U. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis. Environ. Health Perspect. 81:225–239; 1989.CrossRefGoogle Scholar
  83. Mackay, D. Multimedia Environmental Models: The Fugacity Approach. Chelsea, MI: Lewis Publishers; 1991.Google Scholar
  84. Mackay, D. Correlation of bioconcentration factors. Environ. Sci. Technol. 16:274–278; 1982.CrossRefGoogle Scholar
  85. Marking L.L.; Kimerle, R. A., eds. Aquatic Toxicology. ASTM STP 667. Philadelphia: American Society for Testing and Materials; 1979:p. 251–268.CrossRefGoogle Scholar
  86. Mommen, T.P.; Walsh, P. J.;Vitellogenesis and oocyte assembly. Vol. 11. In: Hoar, W.S.; Randall, D. J., eds. Fish Physiology. New York: Academic Press; 1988:p. 347–406.Google Scholar
  87. Moriarty, F. Exposure and residues. In: Moriarty, F., ed., Organochlorine Insecticides: Persistent Organic Pollutants. New York: Academic Press; 1975:p. 29–72.Google Scholar
  88. Muir, D.C.G.; Yarechewski, G.R.B. Dietary accumulation of four chlorinated dioxin congeners by rainbow trout and fathead minnows. Environ. Toxicol. Chem. 7:227–235; 1988.Google Scholar
  89. Mullins, L.J.,Some physical mechanisms in narcosis. Chem. Rev. 54:289–323; 1954.CrossRefGoogle Scholar
  90. Neely, W.B.; Branson, D.R.; Blau, G.E. Partition coefficient measure bioconcentration potential of organic chemicals in fish. Environ. Sci. Technol. 8:1113–1115; 1974.CrossRefGoogle Scholar
  91. Nichols, J.W.; McKim, J.M.; Lien, G.J.; Hoffman, A.D.; Bretelsen, S.L. Physiologically-based toxicokinetic modeling of three waterborne chloroethanes in rainbow trout (On-corhynchus mykiss). Toxicol. Appl. Pharmacol. 110:374–389; 1991.Google Scholar
  92. Nichols, J.W.; McKim, J.M.; Anderson, M.E.; Gargas, H.J.; Clewell, H.J., III; Erickson, R.J.,A physiologically-based toxicokinetic model for the uptake and disposition of waterborne organic chemicals in fish. Toxicol. Appl. Pharmacol. 106:433–447; 1990.PubMedCrossRefGoogle Scholar
  93. Opperhuizen, A.; Damen, H.W.J.; Asyee, G.M.; Van der Steen, J.M.D.; Hutzinger, O. Uptake and elimination by fish of polydimethylsiloxanes (silicones) after dietary and aqueous exposure. Toxicol. Environ. Chem. 13:265–285; 1987.Google Scholar
  94. Opperhuizen, A.; Velde, E.W.; Gobas, F.A.P.C.; Liem, D.A.K.; Van der Steen, J.M.D.; Hutzinger, O. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14:1871–1896; 1985.CrossRefGoogle Scholar
  95. Pawlisz, A.V.; Peters, R.H. A radioactive tracer technique for the study of lethal body burdens of narcotic organic chemicals in Daphnia magna. Environ. Sci. Technol. 27:2795–2800; 1993a.CrossRefGoogle Scholar
  96. Pawlisz, A.V.; Peters, R.H. A test of the equipotency of internal burdens of nine narcotic chemicals using Daphnia magna. Environ. Sci. Technol. 27:2801–2806; 1993b.CrossRefGoogle Scholar
  97. Prest, H.F.; Jarman, W.M.; Burns, S.A.; Weismüller, T.; Martin, M.; Huckins, J.N. Passive water sampling via semipermeable membrane devices (SPMDS) in concert with bivalves in the Sacramento/San Joaquin river delta. Chemosphere 25:1811–1823; 1992.CrossRefGoogle Scholar
  98. Randall, R.C.; Lee, H., II; Ozretich, R.J.; Lake, J.L.; Purell, R.J. Evaluation of selected lipid methods for normalizing pollutant bioaccumulation. Environ. Toxicol. Chem. 10:1431–1436; 1991.Google Scholar
  99. Rasmussen, J.B.; Rowan, D.J.; Lean, D.R.S.; Carey, J. H. Food chain structure in Ontario lakes determines PCB levels in lake trout (Salvelinus namaycush) and other pelagic fish. Can. J. Fish Aquat. Sci. 47:2030–2038; 1990.CrossRefGoogle Scholar
  100. Rees, D.E.; Mandelstam, P.; Lowry, J.Q.; Lipscomb, L.N.,A study of the mechanism of intestinal absorption of benzo(a)pyrene. Biochim. Biophys. Acta 225:96–107; 1971.Google Scholar
  101. Reynoldson, T.B.,Interactions between sediment contaminants and benthic organisms. Hydrobiology 149:53–66; 1987.CrossRefGoogle Scholar
  102. Rowan, D.J.; Rasmussen, J.B. Why don’t Great Lakes fish reflect environmental con centrations of organic contaminants? An analysis of between-lake variability in the ecological partitioning of PCBs and DDT. J. Great Lakes Res. 18:724–741; 1992.CrossRefGoogle Scholar
  103. Rubenstein, N.I.; Gilliam, W.T.; Gregory, N.R. Dietary accumulation of PCBs from a contaminated sediment source by a demersal fish (Leiostomus xanthurus). Aquat. Toxicol. 5:331–342; 1984.Google Scholar
  104. Russell, R.W.; Lazar, R.; Haffner, G.D. Biomagnification of organochlorines in Lake Erie white bass. Environ. Toxicol. Chem. 14:719–724; 1995.Google Scholar
  105. Saito, S.; Tateno, C.; Tanoue, A.; Matsuda, T. Electron microscope autoradiographic examination of uptake behavior of lipophilic chemicals into fish gill. Ecotoxicol. Environ. Safety 19:184–191; 1990.CrossRefGoogle Scholar
  106. Schneider, R. Polychlorinated biphenyls (PCBs) in cod tissues from the western Baltic: significance of equilibrium partitioning and lipid composition in the bioaccumulation of lipophilic pollutants in gill-breathing animals. Meeresforsch. 29:69–79; 1981.Google Scholar
  107. Schultz, I.R.; Hayton, W.L.,Body size and the toxicokinetics of trifluralin in rainbow trout. Toxicol. Appl. Pharmacol. 129:138–145; 1994.CrossRefGoogle Scholar
  108. Serafin, J.A. Avian species differences in intestinal absorption of xenobiotics (PCBs, Dieldrin, Hg2). Comp. Biochem. Physiol. 78:491–496; 1984.Google Scholar
  109. Shaw, G.R.; Connell, D.W. Factors controlling bioaccumulation in food chains. In: Waid, J.S., ed. PCBs and the Environment. vol. I. Boca Raton, FL: CRC Press; 1986:p. 135–141.Google Scholar
  110. Shaw, G.R.; Connell, D.W. Physicochemical properties controlling polychlorinated biphenyl (PCB) concentrations in aquatic organisms. Environ. Sci. Technol. 18:18–23: 1984.CrossRefGoogle Scholar
  111. Sijm, D.T.H.M.; Seinen, W.; Opperhuizen, A. Life-cycle biomagnification study in fish. Environ. Sci. Technol. 26:2162–2174; 1992.CrossRefGoogle Scholar
  112. Södergren, A.,Solvent-filled dialysis membranes simulate uptake of pollutants by aquatic organisms. Environ. Sci. Technol. 21:855–863; 1987.CrossRefGoogle Scholar
  113. Södergren, A.; Okla, L.,Simulation of interfacial mechanisms with dialysis membranes to study uptake and elimination of persistent pollutants in aquatic organisms. Verh. Int. Verein. Limnol. 23:1633–1638; 1988.Google Scholar
  114. Stange, K.; Swackhamer, D.L. Factors affecting phytoplankton species-specific differences in accumulation of 40 polychlorinated biphenyls (PCBs). Environ. Toxicol. Chem. 13:1849–1860; 1994.Google Scholar
  115. Stehly, G.R.; Hayton, W.L. Effect of pH on the accumulation kinetics of pentachlorophenol in goldfish. Arch. Environ. Contam. Toxicol. 19:464–470; 1990.Google Scholar
  116. Struger, J.; Elliot, J.E.; Bishop, C.A.; Obbard, M.E.; Norstrom, R.J.; Weseloh, D.V.; Simon, M.; Ng, P. Environmental contaminants of the common snapping turtle from the Great Lakes-St. Lawrence River basin of Ontario, Canada (1981–1984). J. Great Lakes Res. 19:681–694; 1993.CrossRefGoogle Scholar
  117. Suedel, B.C.; Boraczek, J.A.; Peddicord, R.K.; Clifford, P.A.; Dillon, T.M.,Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev. Environ. Contam. Toxicol. 136:21–84; 1994.CrossRefGoogle Scholar
  118. Swackhamer, D.L.; Hites, R.A.,Occurrence and bioaccumulation of organochlorine compounds in fishes from Siskiwit Lake, Isle Royal, Lake Superior. Environ. Sci. Technol. 22:543–548; 1988.CrossRefGoogle Scholar
  119. Swartz, R.C.; Lee, H., II. Biological processes affecting distribution of pollutants in marine sediments. Part I. Accumulation, trophic transfer, biodegradation and migration. In: Baker, R.A., ed. Contaminants and Sediments. Ann Arbor, MI: Ann Arbor Science Publishers; 1980:p. 534–563.Google Scholar
  120. Thomann, R.V.Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ. Sci. Technol. 23:699–707; 1989.CrossRefGoogle Scholar
  121. Thomann, R.V.; Connolly, J.P. Model of PCB in the Lake Michigan lake trout food chain. Environ. Sci. Technol. 18:65–71; 1984.CrossRefGoogle Scholar
  122. Tillitt, D.E.; Ankley, G.T.; Giesy, J.P.; Ludwig, J.P.; Kurita-Matsuba, H.; Weseloh, D.V.; Ross, P.S.; Bishop, C.A.; Sileo, L.; Stromborg, K.L.; Larson, J.; Kubiak, T.J. Polychlorinated biphenyl residues and egg mortality in double-crested cormorants from the Great Lakes. Environ. Toxicol. Chem. 11:1281–1288; 1992.CrossRefGoogle Scholar
  123. Trust, K.A.; Fairbrother, A.; Hooper, M.J.Effects of 2,3,7,8-tetrachlorodibenz(a)anthracene on immune function and mixed function oxidase in the European starling. Environ. Toxicol. Chem. 13:821–830; 1994.Google Scholar
  124. Tulasi, S.J.; Reddy, P.U.M.; Ramana Rao, J. V. Accumulation of lead and effects on total lipids and lipid-derivatives in the freshwater fish Anabas testudineus (Bloch). Ecotoxicol. Environ. Safety 23:33–38; 1992.CrossRefGoogle Scholar
  125. van den Berg, M.E.J.; Craane, B.L.H.J.; Sinnige, T.; van Mourik, S.; Dirksen, S.; Boudewijn, T.; van der Gaag, M.; Lutke-Schipholt, I.J.; Spenkelink, B.; Brouwer, A. Biochemical and toxic effects of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) in the cormorant (Phalacrocorax carbo) after in ovo exposure. Environ. Toxicol. Chem. 13:803–816; 1994.Google Scholar
  126. van den Heuvel, M.R.; McCarty, L.S.; Lanno, R.P.; Hickie, B.E.; Dixon, D.G. Effect of total body lipid on the toxicity and toxicokinetics of pentachlorophenol in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 20:235–252; 1991.Google Scholar
  127. van der Oost, R.; Heida, H.; Opperhuizen, A.Polychlorinated biphenyl congeners in sediments, plankton, mollusks, crustaceans, and eel in a freshwater lake: Implications of using reference chemicals and indicator organisms in bioaccumulation studies. Arch. Environ. Contam. Toxicol. 17:721–729; 1988.PubMedCrossRefGoogle Scholar
  128. Vanderzaden, M.J.; Rasmussen, J.B. A trophic position model of pelagic food webs-impact on contaminant bioaccumulation in lake trout. Ecol. Monogr. 66:451–477; 1996.CrossRefGoogle Scholar
  129. van Wezel, A.P.; Opperhuizen, A. Narcosis due to environmental pollutants in aquatic organisms: residue-based toxicity, mechanisms and membrane burdens. Crit. Rev. Toxicol. 25:255–279; 1995.CrossRefGoogle Scholar
  130. van Wezel, A.P.; de Vries, D. A.M.; Kostense, S.; Sijm, D.T. H.M.; Opperhuizen, A. Intraspecies variation in lethal body burdens of narcotic compounds. Aquatic Toxicol. 33:325–342; 1995.CrossRefGoogle Scholar
  131. Veith, G.D.; Macek, K.J.; Petrocelli, S.R.; Carroll, J. An evaluation of using partition coefficients and water solubility to estimates bioconcentration factors for organic chemicals in fish. In: Eaton, J.G.; Parrish, P.R.; Hendricks, A. C., eds. Aquatic Toxicolgy. ASTM STP 707. American Society for Testing and Materials; 1980:p. 116–129.Google Scholar
  132. Veith, G.D.; DeFoe, D.L.; Bergstedt, B.V.Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish. Res. Bd. Can. 36:1040–1048; 1979.CrossRefGoogle Scholar
  133. Vetter, R.D.; Carey, M.C.; Patton, J.S.Co-assimilation of dietary fat and benzo(a)pyrene in the small intestine; an absorption model using killifish. J. Lipid Res. 26:428–434; 1985.PubMedGoogle Scholar
  134. Walter, A.; Gutknecht, J. Permeability of small nonelectrolytes through lipid bilayer mem-branes. J. Membrane Biol. 90:207–217; 1986.CrossRefGoogle Scholar
  135. Westhall, J.C.Influence of pH and ionic strength on the aqueous-nonaqueous distribution of chlorinated phenols. Environ. Sci. Technol. 19:193–198; 1985.CrossRefGoogle Scholar
  136. Zitko, V. Metabolism and distribution by aquatic animals. In: Hutzinger, O., ed. The Handbook of Environmental Chemistry. vol. 2, part A. Berlin: Springer; 1980:p. 221–229.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Peter F. Landrum
  • Susan W. Fisher

There are no affiliations available

Personalised recommendations