Nambu—Goto Strings

  • Michio Kaku
Part of the Graduate Texts in Contemporary Physics book series (GTCP)


String theory, at first glance, seems divorced from the standard techniques developed over the past 50 years for second quantized field theories. This is because string theory was first historically discovered as afirst quantized theory.This is the reason why string theory at times appears to be a random collection of arbitrary conventions. Although a second quantized field theory can be derived completely from a single action, a first quantized theory requires additional assumptions. In particular, the vertices, the choice of interactions, and the weights of these perturbation diagrams must be postulated by hand and checked to be unitary later.


Closed String Point Particle Vertex Function Twist Operator World Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Nambu, Lectures at the Copenhagen Summer Symposium (1970).Google Scholar
  2. [2]
    T. Goto Progr. Theoret. Phys. 46 1560 (1971).MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    For earlier formulations, see also H. B. Nielsen 15th International Conference of High Energy Physics (Kiev), 1970.Google Scholar
  4. [4]
    L. Susskind Nuovo Cimento 69A 457 (1970).MathSciNetADSGoogle Scholar
  5. [5]
    See C. B. Thom, in Unified String Theory (edited by M. B. Green and D. Gross), World Scientific, Singapore, 1985.Google Scholar
  6. [6]
    M. A. Virasoro Phys. Rev. D1 2933 (1970).ADSGoogle Scholar
  7. [7]
    A. M. Polyakov Phys. Lett. 103B 207, 21 1 (1981).Google Scholar
  8. [8]
    S. Fubini, D. Gordon, and G. Veneziano Phys. Lett. 29B 679 (1969).ADSGoogle Scholar
  9. [9]
    P. Goddard, J. Goldstone, C. Rebbi, and C. B. Thorn Nucl. Phys. B56 109 (1973).ADSCrossRefGoogle Scholar
  10. [10]
    M. Kato and K. Ogawa Nucl. Phys. B212 443 (1983).ADSCrossRefGoogle Scholar
  11. [11]
    C. S. Hsue, B. Sakita, and M. A. Virasoro Phys. Rev. D2 2857 (1970).ADSGoogle Scholar
  12. [12]
    J. L. Gervais and B. Sakita Nucl. Phys. B34 632 (1971); Phys. Rev. D4 2291 (1971); Phys. Rev. Lett. 30 716 (1973).Google Scholar
  13. [13]
    D. B. Fairlie andH. B. Nielsen Nucl. Phys. B20 637 (1970).ADSCrossRefGoogle Scholar
  14. [14]
    K. Bardakçi andH. Ruegg Phys. Rev. 181 1884 (1969).ADSCrossRefGoogle Scholar
  15. [15]
    M. A. Virasoro Phys. Rev. Leu. 22 37 (1969).ADSCrossRefGoogle Scholar
  16. [16]
    C. J. Goebel and B. Sakita Phys. Rev. Lett. 22 257 (1969).ADSCrossRefGoogle Scholar
  17. [17]
    H. M. Chan Phys. Lett. 28B 425 (1969).Google Scholar
  18. [18]
    H. M. Chan and S. T. Tsou Phys. Lett. 28B 485 (1969).ADSGoogle Scholar
  19. [19]
    Z. J. Koba and H. B. Nielsen Nucl. Phys. B12 517 (1969); B10 633 (1969).Google Scholar
  20. [20]
    I. Caneschi, A. Schwimmer, and G. Veneziano Phys. Lett. 20B 351 (1969).ADSGoogle Scholar
  21. [21]
    M. A. Virasoro Phys. Rev. 177 2309 (1969).MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    J. Shapiro Phys. Lett. 33B 361 (1970).ADSGoogle Scholar
  23. [23]
    M. Yoshimura Phys. Lett. 34B 79 (1971).ADSGoogle Scholar
  24. [24]
    P. Goddard and C. B. Thorn Phys. Lett. 40B 235 (1972).ADSGoogle Scholar
  25. [25]
    R. C. Brower and K. A. Friedman Phys. Rev. D7 535 (1973).ADSGoogle Scholar
  26. [26]
    E. Del Giudice, P. Di Vecchia, and S. Fubini Ann. Physics 70 378 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Michio Kaku
    • 1
  1. 1.Department of PhysicsCity College of the City University of New YorkNew YorkUSA

Personalised recommendations