Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 11))

Abstract

Hearing in its broadest sense is the detection, by specialized mechanoreceptors, of mechanical energy propagated through the environment. In terrestrial vertebrates, this typically means inner ear transduction of air pressure waves radiating out from a sound source, though the detection of substrate vibrations can also be considered as a form of hearing. In aquatic environments, the extended contribution of incompressible flow in the near field of the source adds additional complexities, and both incompressible flow and propagated pressure waves are detected by a range of specialized hair cell mechanosensory systems. Hair cells are generalized mechanical transducers that respond to mechanical deformation of the receptor hairs at their apical surface. One of the interesting stories of hearing in general, and in aquatic vertebrates in particular, is how the structures associated with hair cell organs play a major role in modifying or channeling the environmental stimulus onto the hair cell receptors. Hence the peripheral anatomy determines to a large degree what particular stimulus feature is being encoded at the level of the hair cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahlborn B, Harper DG, Blacke RW, Alborn D, Cam M (1991) Fish without footprints. J Theor Biol 148:521–533.

    Google Scholar 

  • Bastian J (1981) Electrolocation II. The effects of moving objects and other electrical stimuli on the activities of two categores of posterior lateral line lobe cells in Apternotus albifrons. J Comp Physiol 144:481–494.

    Google Scholar 

  • Bastian J (1986a) Gain control in the electrosensory system: a role for the descending projections to the electrosensory lateral line lobe. J Comp Physiol 158:505–515.

    CAS  Google Scholar 

  • Bastian J (1986b) Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe. J Neurosci 6:553–562.

    CAS  Google Scholar 

  • Bastian J (1986c) Electrolocation: behavior, anatomy, and physiology. In: BullockTH, Heiligenberg W (eds) Electroreception. New York: Wiley, pp. 577–612.

    Google Scholar 

  • Bauer JA Jr, Bauer SE (1981) Reproductive biology of pygmy angelfish of the genusCentropyge (Pomacanthidae). Bull Mar Sci 3:495–513.

    Google Scholar 

  • Bell CC, Bodznick D, Montgomery JC, Bastian J (1996) Generation and subtraction of sensory expectations within cerebellar-like structures. Brain Behav Evol 1997;50(Suppl 1):17–31.

    Google Scholar 

  • Bergeijk WA van (1964) Directional and nondirectional hearing in fish. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford: Pergamon Press, pp. 281–299.

    Google Scholar 

  • Bergeijk WA van (1966) The evolution of the sense of hearing in vertebrates.Am Zool 6:371–377.

    Google Scholar 

  • Bergeijk, WA van (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology, New York: Academic, pp. 1–48.

    Google Scholar 

  • Blaxter JHS, Gray JAB, Best ACG (1983) Structure and development of the free neuromasts and lateral line system of the herring. J Mar Biol Assoc UK 63:247–260.

    Google Scholar 

  • Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus. J Comp Physiol [A] 140:163–172.

    Google Scholar 

  • Bleckmann H (1985) Perception of water surface waves: how surface waves are used for prey identification, prey localization and intraspecific communication. Prog Sensory Physiol 5:147–166.

    Google Scholar 

  • Bleckmann H (1988) Prey identification and prey localization in surface-feeding fish and fishing spiders. In: Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 619–641.

    Google Scholar 

  • Bleckmann H (1993) Role of the lateral line in fish behaviour. In: Pitcher TJ (ed) Behavior of Teleost Fishes, 2nd ed. New York: Chapman & Hall, pp. 201–246.

    Google Scholar 

  • Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination of the surface-feeding fish Aplochelius lineatus—a prerequisite for prey localization? J Comp Physiol [A] 143:485–490.

    Google Scholar 

  • Bleckmann H, Muller U, Hoin-Radkovski I (1984) Determination of source distance by the surface-feeding fishes Aplocheilus lineatus (Cyprinodontidae) and Pantodon bucholzi (Pantodontidae). In: Varju D, Schnitzler U (eds) Orientation and Localization in Engineering and Biology Heidelberg, New York: Springer, pp. 66–68.

    Google Scholar 

  • Bleckmann H, Tittel G, Blubaum-Gronau E (1989) Lateral line system of surface-feeding fish: anatomy, physiology and behavior. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 501–526.

    Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol [A] 168:749–757.

    CAS  Google Scholar 

  • Bleckmann H, Mogdans J, Fleck A (1996) Integration of hydrodynamic information in the hindbrain of fishes. Mar Fresh Behav Physiol 27:77–94.

    Google Scholar 

  • Blickhan R, Krick C, Zehren D, Nachtigall W (1992) Generation of a vortex chain in the wake of a subundulatory swimmer Naturwissenschaften 79:220–221.

    Google Scholar 

  • Blubaum-Gronau E, Mánz H (1987) Topologische Reprasentation primarer Afferenzen einzeiner Seitenlinienabschnitte beim Schmetterlingsfisch Pantodon buchholzi (in German). Verh Dtsch Zool Ges 80:268–269.

    Google Scholar 

  • Bodznick D, Schmidt AW (1984) Somatotopy within the medullary electrosensory nucleus of the little skate, Raja erinacea. J Comp Neurol 225:581–590.

    PubMed  CAS  Google Scholar 

  • Boyle R, Highstein SM (1990) Efferent vestibular system in the toadfish: action upon horizontal canal afferents. J Neurosci 10:1570–1582.

    PubMed  CAS  Google Scholar 

  • Breithaupt T, Ayers J (1996) Visualization and quantitative analysis of biological flow fields using suspended particles. In: Lenz PH, Hartline DK, Purcell JE, Macmillan DL (eds) Zooplankton: Sensory Ecology and Physiology. Amsterdam: Gordon and Bheach, pp. 117–129.

    Google Scholar 

  • Burgess JW, Shaw E (1981) Effects of acoustico-lateralis denervation in a facultative schooling fish: a nearest-neighbor matrix analysis. Behav Neural Biol 33:488–497.

    PubMed  CAS  Google Scholar 

  • Cahn PH (1972) Sensory factors in the side-to-side spacing and positional orientation of the tuna, Euthynnus affinis, during schooling. Fish Bull 70:197–204.

    Google Scholar 

  • Campenhausen von C, Reiss I, Weissert R (1981) Detection of stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol [A] 143:369–374.

    Google Scholar 

  • Claas B, Mánz H (1981) Projection of lateral line afferents in a teleost’s brain. Neurosci Lett 23:287–290.

    PubMed  CAS  Google Scholar 

  • Claas B, Mánz H, Zittlau KE (1989) Direction coding in central parts of the lateral line system. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 409–419.

    Google Scholar 

  • Collazo A, Fraser SE, Mabee PM (1994) A dual embryonic origin for vertebrate mechanoreceptors. Science 264:426–430.

    PubMed  CAS  Google Scholar 

  • Coombs S (1995) Natural orienting behaviors for measuring lateral line function. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in Comparative Psychoacoustics. Basel: Birkhauser Verlag, pp. 237–248.

    Google Scholar 

  • Coombs S, Conley RA (1997a) Dipole source localization by mottled sculpin.I. Approach strategies. J Comp Physiol A 180:387–399.

    CAS  Google Scholar 

  • Coombs S, Conley RA (1997b) Dipole source localization by mottled sculpin. II. The role of lateral line excitation patterns. J Comp Physiol A 180:401–415.

    CAS  Google Scholar 

  • Coombs S, Fay RR (1993) Source level discrimination by the lateral line system of the mottled sculpin. J Acoust Soc Am 93:2116–2123.

    PubMed  CAS  Google Scholar 

  • Coombs S, Janssen J (1990a) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol [A] 167:557–567.

    CAS  Google Scholar 

  • Coombs S, Janssen J (1990b) Water flow detection by the mechanosensory lateral line. In: Stebbins WC, Berkley MA (eds) Comparative Perception: Complex Signals, vol. 2. New York: Wiley, pp. 89–124.

    Google Scholar 

  • Coombs S, Montgomery JC (1992) Fibers innervating different parts of the lateral line system of the Antarctic fish, Trematomus bernacchii, have similar neural responses despite large variations in peripheral morphology. Brain Behav Evol 40:217–233.

    PubMed  CAS  Google Scholar 

  • Coombs S, Montgomery J (1994) Function and evolution of superficial neuromasts in an antarctic notothenioid fish. Brain Behav Evol 44:287–298.

    PubMed  CAS  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 553–593.

    Google Scholar 

  • Coombs S, Görner P, Mánz H (1989a) A brief overview of the mechanosensory lateral line system and the contributions to this volume. In: Coombs S, Göner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 3–5.

    Google Scholar 

  • Coombs S, Fay RR, Janssen J (1989b) Hot-film anemometry for measuring lateral line stimuli. J Acoust Soc Am 85:2185–2193.

    CAS  Google Scholar 

  • Coombs S, Janssen J, Montgomery J (1991) Functional and evolutionary implications of peripheral diversity in lateral line systems. In: Webster D, Popper AM, Fay RR (eds) The Evolution of Hearing. New York: Springer-Verlag, pp. 267–288.

    Google Scholar 

  • Coombs S, Hastings M, Finneran J (1995) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol [A] 178:359–371.

    Google Scholar 

  • Coombs, S, Mogdans J, Halstead M, Montgomery J (In Press). Transformations of peripheral inputs by the first order brainstem nucleus of the lateral line system. J Comp Physiol A

    Google Scholar 

  • Corwin JT, Balak KJ, Borden PC (1989) Cellular events underlying the renegenerative replacement of lateral line sensory epithelia in amphibians. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 161–186.

    Google Scholar 

  • Denton EJ, Gray JAB (1982) The rigidity of fish and patterns of lateral line stimulation. Nature 297:679–681.

    PubMed  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond [B] 218:1–26.

    CAS  Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral line of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 595–617.

    Google Scholar 

  • Denton EJ, Gray JAB (1993) Stimulation of the acoustico-lateralis system of clupeid fish by external sources and their own movements. Philos Trans R Soc Lond [B] 341:113–127.

    Google Scholar 

  • Denton EJ, Gray JAB, Blaxter JHS (1979) The mechanics of the clupeid acoustico-lateralis system: frequency responses. J Mar Biol Assoc UK 59:27–47.

    Google Scholar 

  • DeRosa F, Fine ML (1988) Primary connections of the anterior and posterior lateralline nerves in the oyster toadfish. Brain Behav Evol 31:312–317.

    CAS  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev 38:51–105.

    PubMed  CAS  Google Scholar 

  • Elepfandt A (1982) Accuracy of taxis response to water waves in the clawed toad (Xenopus laevis Daudin) with intact or with lesioned lateral line system. J Comp Physiol [A] 148:535–545.

    Google Scholar 

  • Elepfandt A, Seiler B, Aicher B (1985) Water wave frequency discrimination in the clawed frog, Xenopus laevis. J Comp Physiol [A] 157:255–261.

    Google Scholar 

  • Enger PS, Kalmijn AJ, Sand O (1989) Behavioral identification of lateral line and inner ear function. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 575–587.

    Google Scholar 

  • Ertman SC, Jumars PA (1988) Effects of bivalve siphon currents on the settlement of inert particles and larvae. J Mar Res 46:797–813.

    Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka: Hill-Fay Associates.

    Google Scholar 

  • Finger TE, Tong SL (1984) Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish. J Comp Neurol 229:129–151.

    PubMed  CAS  Google Scholar 

  • Flock A (1965a) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol Suppl S199:7–90.

    Google Scholar 

  • Flock A (1965b) Transducing mechanisms in the lateral line canal organ receptors. Cold Spring Harb Symp Quant Biol 30:133–145.

    CAS  Google Scholar 

  • Flock A (1971) Sensory transduction in hair cells. In: Lowenstein WR (ed) Handbook of Sensory Physiology, vol. 1: Principles of Receptor Physiology. Berlin, Heidelberg: Springer-Verlag, pp. 396–441.

    Google Scholar 

  • Flock A, Russel IJ (1973) The postsynaptic action of efferent fibres in the lateral line organ of the burbot Lota Iota. J Physiol 235:591–605.

    PubMed  CAS  Google Scholar 

  • Flock A, Wersäll J (1962) A study of the orientation of the sensory hairs of the receptor cells in the lateral line organs of fish, with special reference to the function of the receptors. J Cell Biol 15:19–27.

    PubMed  CAS  Google Scholar 

  • Görner P (1963) Untersuchungen zur Morpholgie and Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Z Vergl Physiol 47:316–338.

    Google Scholar 

  • Görner P (1973) The importance of the lateral line system for the perception of surface waves in the clawed toad, Xenopus laevis Daudin. Experientia 29:295–296.

    Google Scholar 

  • Görner P (1976) Source localization with the labyrinth and lateral-line in the clawed toad (Xenopus laevis). In: Schuijf A, Hawkins A (eds) Sound Reception in Fish. Amsterdam, New York: Elsevier, pp. 171–183.

    Google Scholar 

  • Gray J (1984) Interaction of sound pressure and particle acceleration in the excita-tion of the lateral-line neuromasts of sprats. Proc R Soc Lond [B] 220:299–325.

    Google Scholar 

  • Gray JAB, Best ACG (1989) Patterns of excitation of the lateral line of the ruffe.J Mar Biol Assoc UK 69:289–306.

    Google Scholar 

  • Gray JAB, Denton EJ (1991) Fast pressure pulses and communication between fish. J Mar Biol Assoc UK 71:83–106.

    Google Scholar 

  • Halstead MDB (1994) Detection and location of prey by the New Zealand freshwater Galaxiid, Galaxias fasciatus (Pisces: Salmoniformes). Master’s thesis, University of Auckland.

    Google Scholar 

  • Harris GG, Milne DC (1966) Input-output characteristics of the lateral-line sense organs of Xenopus laevis. J Acoust Soc Am 40:32–42.

    PubMed  CAS  Google Scholar 

  • Harvey R, Blaxter JHS, Hoyt RD (1992) Development of superficial and lateral line neuromasts in larvae and juveniles of plaice (Pleuronectes platessa) and sole (Solea solea). J Mar Biol Asoc UK 72:651–668.

    Google Scholar 

  • Hassan ES (1985) Mathematical analysis of the stimulus for the lateral line organ. Biol Cybern 52:23–36.

    PubMed  CAS  Google Scholar 

  • Hassan ES (1986) On the discrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). J Comp Physiol 159:701–710.

    CAS  Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 217–227.

    Google Scholar 

  • Hassan ES (1992a) Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis. I. The case of moving in open water and of gliding towards a plane surface. Biol Cybern 66:443–452.

    Google Scholar 

  • Hassan ES (1992b) Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis. II. The case of gliding alongside or above a plane surface. Biol Cybern 66:453–461.

    Google Scholar 

  • Hassan ES, Abdel-Latif H, Biebricher R (1992) Studies on the effects of Ca++ and Co’ on the swimming behavior of the blind Mexican cave fish. J Comp Physiol [A] 171:413–419.

    Google Scholar 

  • Hoekstra D, Janssen J (1985) Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environ Biol Fish 12:111–117.

    Google Scholar 

  • Hoekstra D, Janssen J (1986) Lateral line receptivity in the mottled sculpin (Cottus bairdi). Copeia 1986:91–96.

    Google Scholar 

  • Hofer B (1908) Studien uber die hautsinnesorgane der fische. I. Die funktion der seitenorgane bei den fischen. Ber Kgl Bayer Biol Versuchsstation Munchen 1:115–164.

    Google Scholar 

  • Hoin-Radkovsky I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon buchholzi Pantodontidae Anim Behav 32:840–851.

    Google Scholar 

  • Janssen J (1990) Localization of substrate vibrations by the mottled sculpin (Cottus bairdi). Copeia 1990:349–355.

    Google Scholar 

  • Janssen J, Coombs S, Hoekstra D, Platt C (1987) Anatomy and differential growth of the lateral line system of the mottled sculpin Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behav Evol 30:210–229.

    PubMed  CAS  Google Scholar 

  • Janssen J, Sideleva V, Montgomery J (1991) Under-ice observations of fish behavior at McMurdo Sound. Antarctic J US 26:174–175.

    Google Scholar 

  • Janssen J, Jones WR, Whang A, Oshel PE (1995) Use of the lateral line in particulate feeding in the dark by juvenile alewife (Alosa pseudoharengus). Can J Fish Aquat Sci 52:358–363.

    Google Scholar 

  • Jones JE, Corwin JT (1996) Regeneration of sensory cells after laser ablation in the lateral line system: hair cell lineage and macrophage behavior revealed by time-lapse video microscopy. J Neurosci 16:649–662.

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner-ear sensory systems. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 187–215.

    Google Scholar 

  • Katz LC, Potel MJ, Wassersug RJ (1981) Structure and mechanisms of schooling in tadpoles of the clawed frog, Xenopus laevis. Anim Behav 29:20–33.

    Google Scholar 

  • Konishi M (1993) Listening with two ears. Sci Am 268:34–41.

    Google Scholar 

  • Kroese ABA, Netten SM van (1989) Sensory transduction in lateral line hair cells. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 265–284.

    Google Scholar 

  • Kroese ABA, Schellart N (1992) Velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68:2212–2221.

    PubMed  CAS  Google Scholar 

  • Kroese ABA, van der Zalm JM, Van den Bercken J (1978) Frequency response of the lateral-line organ of Xenopus laevis. Pfluegers Arch 375:167–175.

    CAS  Google Scholar 

  • LaBarbera M (1981) Water flow patterns in and around three species of articulate brachiopods. J Exp Mar Biol Ecol 55:185–206.

    Google Scholar 

  • Lewis J (1986) Programs of cell division in the lateral line system. TINS 4:135–138.

    Google Scholar 

  • Lewis ER, Henry KR (1992) Modulation of cochlear nerve spike rate by cardiac activity in the gerbil. Hear Res 63:7–11.

    PubMed  CAS  Google Scholar 

  • Lighthill J (1993) Estimates of pressure differences across the head of a swimming clupeid fish. Philos Trans R Soc Lond [B] 341:129–140.

    Google Scholar 

  • Magnuson JJ (1978) Locomotion by scrombrid fishes: hydromechanics, morphology and behavior. In: Hoar WS, Randall DJ (eds) Fish Physiology: Locomotion.New York: Academic Press, pp. 239–313.

    Google Scholar 

  • Maler L (1979) The posterior lateral line lobe of certain gymnotoid fish: quantitative light microscopy. J Comp Neurol 183:323–363.

    PubMed  CAS  Google Scholar 

  • Maler L, Sas E, Rogers J (1981) The cytology of the posterior lateral line lobe of high frequency electric fish (Gymnotidae): dendritic differentiation and synaptic specificity in a simple cortex. J Comp Neurol 158:87–141.

    Google Scholar 

  • McCormick CA (1981) Central projections of the lateral line and eighth nerves in the bowfin, Amia calva. J Comp Neurol 197:1–15.

    PubMed  CAS  Google Scholar 

  • McCormick CA (1983) Central connections of the octavolateralis nerves in the pike cichlid, Crenicichla lepidota. Brain Res 265:177–185.

    PubMed  CAS  Google Scholar 

  • McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 341–364.

    Google Scholar 

  • McCormick CA, Bradford MR Jr (1988) Central connections of the octavolateralis system: evolutionary considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 733–756.

    Google Scholar 

  • McCormick CA, Bradford MR Jr (1994) Organization of inner ear endorgan projec-tions in the goldfish, Carassius auratuos. Brain Behav Evol 43:189–205.

    PubMed  CAS  Google Scholar 

  • Merzkirch W (1987) Flow Visualization. Orlando, FL: Academic Press.

    Google Scholar 

  • Mohr C, Görner P (1996) Innervation patterns of the lateral line stitches of the clawed toad Xenopus laevis Daudin and their reorganization during metamor-phosis. Brain Behav Evol 48:55–69.

    PubMed  CAS  Google Scholar 

  • Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 174:145–148.

    PubMed  CAS  Google Scholar 

  • Montgomery JC, Coombs S (1992) Physiological characterization of lateral line function in the Antarctic fish (Trematomus bernacchii). Brain Behav Evol 40:209–216.

    PubMed  CAS  Google Scholar 

  • Montgomery JC, Coombs S (1998) Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator. J Exp Biol 201(1):91–102.

    Google Scholar 

  • Montgomery JC, Hamilton AR (1997) The sensory biology of prey capture in the dwarf scorpion fish (Scorpaena papillosus). Mar Fresh Behav Physio 30:209–223.

    Google Scholar 

  • Montgomery JC, Milton RC (1993) Use of the lateral line for feeding in the torrentfish (Cheimarrichthys fosteri). N Z J Zool 20:121–125.

    Google Scholar 

  • Montgomery JC, Saunders AJ (1985) Functional morphology of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proc R Soc Lond [B] 224:197–208.

    CAS  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963.

    CAS  Google Scholar 

  • Montgomery JC, Coombs S, Janssen J (1994) Form and function relationships in lateral line systems: comparative data from six species of antarctic notothenioid fish. Brain Behav Evol 44:299–306.

    PubMed  CAS  Google Scholar 

  • Montgomery JC, Skipworth E (1997) Detection of weak water jets by the short-tailed stingray Dasyatis brevicaudatus (Pisces: Dasyatididae). Copeia 1997:881–883.

    Google Scholar 

  • Montgomery JC, Coombs S, Conley RA, Bodznick D (1995a) Hindbrain sensory processing in lateral line, electrosensory and auditory systems: a comparative overview of anatomical and functional similarities. Audit Neurosci 1:207–231.

    Google Scholar 

  • Montgomery JC, Coombs S, Halstead M (1995b) Biology of the mechanosensory lateral line. Rev Fish Biol Fisheries 5:399–416.

    Google Scholar 

  • Máller HM, Fleck A, Bleckmann H (1996) The responses of central octavolateralis cells to moving sources. J Comp Physiol [A] 179:455–471.

    Google Scholar 

  • Mánz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol [A] 157:555–568.

    Google Scholar 

  • Netten SM von, Kroese ABA (1987) Laser interferometric measurements on the dynamic behaviour of the cupula in the fish lateral line. Hear Res 29:55–61.

    PubMed  Google Scholar 

  • Netten SM von, Kroese ABA (1989) Dynamic behavior and micromechanical properties of the cupula. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 247–263.

    Google Scholar 

  • New J, Northcutt RG (1984) Central projections of the lateral line nerves in the shovelnose sturgeon. J Comp Neurol 225:129–140.

    PubMed  CAS  Google Scholar 

  • New JG, Singh S (1994) Central topography of anterior lateral line nerve projec-tions in the channel catfish, Ictalurus punctatus. Brain Behav Evol 43:34–50.

    PubMed  CAS  Google Scholar 

  • New JG, Coombs S, McCormick CA, Oshel PE (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J Comp Neurol 364:1–13.

    Google Scholar 

  • Northcutt RG (1986) Evolution of the octavolateralis system: evaluation and heuristic value of phylogenetic hypotheses. In: Ruben RJ, Van De Water TR, Rubel EW (eds) The Biology of Change in Otolaryngology (Proc./9th ARO Medwinter Research Mtg., 1986). Amsterdam, New York: Elsevier, pp. 3–14.

    Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 17–78.

    Google Scholar 

  • Northcutt RG, Brandle K (1995) Development of branchiomeric and lateral line nerves in the axolotl. J Comp Neurol 355:427–454.

    PubMed  CAS  Google Scholar 

  • Northcutt RG, Catania KC, Criley BB (1994) Development of lateral line organs in the axolotyl. J Comp Neurol 340:480–514.

    PubMed  CAS  Google Scholar 

  • Northcutt RG, Brandle K, Fritzsch B (1995) Electroreceptors and mechanosensory lateral line organs arise from single placodes in Axolotls. Dev Biol 168:358–373.

    PubMed  CAS  Google Scholar 

  • O’Brian WJ, Browman HI, Evans BI (1990) Search strategies and foraging of animals. Am Sci 78:152–160.

    Google Scholar 

  • Partridge B, Pitcher TJ (1980) The sensory basis of fish schools: relative roles of lateral line and vision. J Comp Physiol [A] 135:315–325.

    Google Scholar 

  • Peterson CH, Quammen ML (1982) Siphon nipping: its importance to small fishes and its impact on growth of the bivalve Protothaca staminea (Conrad). J Exp Mar Biol Ecol 63:249–268.

    Google Scholar 

  • Pitcher TJ, Partridge BL, Wardle CS (1976) A blind fish can school. Science 194:963–965.

    PubMed  CAS  Google Scholar 

  • Pollak GD, Casseday JH (1989) The Neural Basis of Echolocation in Bats. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Poulson T (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290.

    Google Scholar 

  • Price RE, Schiebe MA (1978) Measurements of velocity from excurrent siphons of freshwater clams. Nautilus 92:67–69.

    Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131.

    PubMed  CAS  Google Scholar 

  • Roberts BL, Meredith GE (1989) The efferent system. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 445–460.

    Google Scholar 

  • Rosen MW (1959) Water flow about swimming fish. U.S. Naval Ord Test Stn Techn Proc 2298:1–94.

    Google Scholar 

  • Rowe DM, Denton EJ, Batty RS (1993) Head turning in herring and some other fish. Philos Trans R Soc Lond [B] 341:141–148.

    Google Scholar 

  • Russell IJ, Roberts BL (1972) Inhibition of spontaneous lateral line activity by efferent nerve stimulation. J Exp Biol 57:77–82.

    Google Scholar 

  • Satou M, Takeuchi H, Takei K, Hasegawa T, Okumoto N, Ueda K (1987) Involvement of vibrational and visual cues in eleciting spawning behaviour in male Hirne salmon (landlocked red salmon, Oncorhynchus nerka) Anim Behav 35:1556–1584.

    Google Scholar 

  • Satou M, Shiraishi A, Matsushima T, Okumoto N (1991) Vibrational communication during spawning behavior in the Hirne salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol [A] 168:417–428.

    Google Scholar 

  • Satou M, Takeuchi HA, Takei K, Hasegawa T, Matsushima T, Okumoto N (1994a) Characterization of vibrational and visual signals which elicit spawning behavior in the male hime salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol [A] 174:527–537.

    Google Scholar 

  • Satou M, Takeuchi HA, Tanabe M, Kitamura S, Okumoto N, Iwata M, Nishii J (1994b) Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communcation of the hime salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol [A] 174:539–549.

    Google Scholar 

  • Saunders AJ, Montgomery JC (1985) Field and laboratory studies of the feeding behavior of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proc R Soc Lond [B] 224:209–221.

    CAS  Google Scholar 

  • Schellart NM, Kroese ABA (1989) Interrelationship of acousticolateral and visual systems in the teleost midbrain. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 421–444.

    Google Scholar 

  • Schwartz E (1967) Analysis of surface-wave perception in some teleosts. In: Cahn PH (ed) Lateral Line Detectors. Bloomington, IN: Indiana University Press, pp. 123–134.

    Google Scholar 

  • Shaw E (1969) The duration of schooling among fish separated and those not separated by barriers. Am Mus Novit 2373:1–13.

    Google Scholar 

  • Shelton PMJ (1970) The lateral line system at metamorphosis in Xenopus laevis (Daudin). J Embryol Exp Morphol 24:511–524.

    PubMed  CAS  Google Scholar 

  • Smith SC, Lannoo MJ, Armstrong JB (1990) Development of the mechanoreceptive lateral-line system in the axolotl: placode specification, guidance of migration, and the origin of neuromast polarity. Anat Embryol 182:171–180.

    PubMed  CAS  Google Scholar 

  • Song J, Nortcutt RG (1991a) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:10–37.

    CAS  Google Scholar 

  • Song J, Northcutt RG (1991b) The primary projections of the lateral-line nerves of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:38–63.

    CAS  Google Scholar 

  • Song J, Popper AN (1994) Two types of hair cells in the mechanosensory lateral line receptors: evidence based on ototoxicity sensitivity. Abstracts of the 18th Midwinter Meeting of the Association of Res Otolaryngology, vol. 75.

    Google Scholar 

  • Song J, Popper AN (1995) Differences in postembryonic growth and ultrastructure of sensory and supporting cells in canal and superficial neuromasts of the lateral line. Abstracts of the 18th Midwinter Meeting of the Association of Res Otolaryngology, vol. 44.

    Google Scholar 

  • Stamhuis EJ, Videler JJ (1995) Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry. J Exp Biol 198:283–294.

    PubMed  Google Scholar 

  • Striedter GF (1991) Auditory, electrosensory and mechanosensory lateral line pathways through the forebrain in channel catfishes. J Comp Neural 312:311–331.

    CAS  Google Scholar 

  • Sutterlin AM, Waddy S (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J Fish Res Bd Canada 32:2441–2446.

    Google Scholar 

  • Takeuchi H, Namba H (1989) Feeding behavior and lateral line system in axolotl, Ambystoma mexicanum. Zool Sci 6:12–16.

    Google Scholar 

  • Takeuchi H, Namba H (1990) Feeding behavior and lateral line system in axolotl, Ambystoma mexicanum. II. Effects of blocking the mechanosensory lateral line system by cobalt ions. Zool Sci 7:11–77.

    Google Scholar 

  • Takeuchi H, Nakamura S, Nagai T (1991) Feeding behavior of the eyeless mutant in the axolotl, Ambystoma mexicanum. Zool Sci 8:11–90.

    Google Scholar 

  • Teyke T (1985) Collision with and avoidance of obstacles by blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol [A] 157:837–843.

    CAS  Google Scholar 

  • Teyke T (1988) Flow field, swimming velocity and boundary layer: parameters which affect the stimulus for the lateral line organ in blind fish. J Comp Physiol [A] 163:53–61.

    CAS  Google Scholar 

  • Tittel G (1988) Untersuchungen zum Beutefangverhalten des Streifenhechtlings Aplocheilus lineatus(Cu. & Val.).Ein Modell zur Richtungsdetermination unter Berucksichtigung von ontogenetischen Prozessen des peripheren Seitenliniensystems (Ph.D. Thesis),Giessen, W. Germany: Justus-Liebig-Universitat Giessen.

    Google Scholar 

  • Triantafyllou MS, Triantafyllou GS (1995) An efficient swimming machine. Sci Am 64–70.

    Google Scholar 

  • Tricas TC, Highstein SM (1991) Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. J Comp Physiol [A] 169:25–37.

    CAS  Google Scholar 

  • Unbehauen H (1980) Morphologische and elektrophysiologische Untersuchungen zur Wirkung von Wasserwellen auf das Seitenlinienorgan des Streifenhechtlings (Aplocheilus lineatus) (Ph.D. Thesis), Giessen, W. Germany: Justus-LiebigUniversitat Giessen.

    Google Scholar 

  • Velluti RA, Pena JL, Pedmonte M, Narins PM (1994) Internally-generated sound stimulates cochlear nucleus units. Hear Res 72:19–22.

    PubMed  CAS  Google Scholar 

  • Vogel S (1994) Life in Moving Fluids: the Physical Biology of Flow, 2nd ed. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Weissert R, Campenhausen von C (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol 143:375–381.

    Google Scholar 

  • Will U (1988) Organization and projections of the area octavolateralis in amphibians. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T (eds) The Evolution of the Amphibian Auditory System. Chichester, NY: Wiley, pp. 185–208.

    Google Scholar 

  • Will U (1989) Central mechanosensory lateral line system in amphibians. In: Coombs S, Görner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 365–386.

    Google Scholar 

  • Winklbauer R (1989) Development of the lateral line system in Xenopus. Progress in Neurobiology 32:181–206.

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Hausen P (1983) Development of the lateral line system in Xenopus laevis. I. Normal development and cell movement in the supraorbital system. J Embryol Exp Morph 76:265–281.

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Hausen P (1983) Development of the lateral line system in Xenopus laevis. II. Cell multiplication and organ formation in the supraorbital system. J Embryol Exp Morphol 76:283–296.

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Hausen P (1985) Development of the lateral line system in Xenopus laevis. IV. Pattern formation in the supraorbital system. J Embryol Exp Morphol 88:193–207.

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Hausen P (1985) Development of the lateral line system in Xenopus laevis. III. Development of the supraorbital system in triploid embryos and larvae. J Embryol Exp Morphol 88:183–192.

    PubMed  CAS  Google Scholar 

  • Zotolli SJ (1978) Comparative morphology of the Mauthner cell in fish and amphibians. In: Faber D, Korn H (eds) Neurobiology of the Mauthner Cell. New York: Raven Press, pp. 13–45.

    Google Scholar 

  • Zottoli SJ, Danielson PD (1989) Lateral line afferent and efferent systems of the goldfish with special reference to the Mauthner cell. In: Coombs S, Garner P, Mánz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York, Berlin: Springer-Verlag, pp. 461–480.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coombs, S., Montgomery, J.C. (1999). The Enigmatic Lateral Line System. In: Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Fish and Amphibians. Springer Handbook of Auditory Research, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0533-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0533-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6806-2

  • Online ISBN: 978-1-4612-0533-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics