Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 11))

Abstract

Fossil evidence shows that an inner ear is found in the most primitive of jawless vertebrates (Stensiö 1927; Jarvick 1980; Long 1995). It may never be known whether these vertebrates actually were able to “hear” or whether the earliest ear may have been only a vestibular organ for the detection of angular and linear accelerations of the head. However, it is not hard to imagine that such a system could have ultimately evolved into a system for detection of somewhat higher frequency sounds during early vertebrate evolution (Van Bergeijk 1967; Poper and Fay 1997). Although some might argue that sound detection would not have evolved until fish, or predators, started to make sounds, this may not be a valid argument. In fact, it is very likely that the earliest role, and still the most general role, for sound detection is to enable a fish to gain information about its environment from the environment’s acoustic signature (Popper and Fay 1993). Such a signature results from the ways a sound field produced by sources such as surface waves, wind, rain, and moving animals is scattered by things like the water surface, bottom, and other objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RMcN (1962) The structure of the Weberian apparatus in the Cyprini. Proc Zool Soc Lond 139:451–473.

    Google Scholar 

  • Allen J (1997) Out hair cells shift the excitation pattern via basement membrane tension. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR and HechtPoinar E (eds) Diversity in Auditory Mechanics. Singapore: World Scientific Publishers, pp. 167–175.

    Google Scholar 

  • Barber VC, Emerson CJ (1980) Scanning electron microscopic observations on the inner ear of the skate Raja ocellata. Cell Tissue Res 205:199–215.

    PubMed  CAS  Google Scholar 

  • Blaxter JHS (1981) The swimbladder and hearing. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 61–71.

    Google Scholar 

  • Blaxter JHS, Denton EJ, Gray JAB (1981) Acoustico-lateralis systems in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 39–59.

    Google Scholar 

  • Buwalda RJA (1981) Segregation of directional and non-directional acoustic information in the cod. elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 139–171.

    Google Scholar 

  • Buwalda RJA, Schuijf A, Hawkins AD (1983) Discrimination by the cod of sounds from opposing directions. J Comp Physiol 150:175–184.

    Google Scholar 

  • Capranica R, Moffat AJM (1980) Nonlinear properties of the peripheral auditory system of amphibians. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 139–166.

    Google Scholar 

  • Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 125:441–463.

    Google Scholar 

  • Chang JSY, Popper AN, Saidel WM (1992) Heterogeneity of sensory hair cells in a fish ear. J Comp Neurol 324:621–640.

    PubMed  CAS  Google Scholar 

  • Colburn S, Durlach H (1978) Models of binaural interaction. In: Carterette E, Friedman M (eds) Handbook of Perception, Vol. IV. New York: Academic Press, pp. 461.

    Google Scholar 

  • Coombs SL, Fay RR (1985) Adaptation effects on amplitude modulation detection: behavioral and neurophysiological assessment in the goldfish auditory system. Hear Res 19:57–71.

    PubMed  CAS  Google Scholar 

  • Coombs SL, Fay RR (1987) Response dynamics of goldfish saccular nerve fibers: effects of stimulus frequency and intensity on fibers with different tuning, sensitivity and spontaneous activity. J Acoust Soc Am 81:1025–1035.

    PubMed  CAS  Google Scholar 

  • Coombs SL, Popper AN (1979) Hearing differences among Hawaiian squirrelfishes (family Holocentridae) related to differences in the peripheral auditory system. J Comp Physiol 132:203–207.

    Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Measuring and modeling lateral line excitation patterns to changing dipole source locations. J Comp Physiol 178:359–371.

    CAS  Google Scholar 

  • Corwin JT (1977) Morphology of the macula neglecta in sharks of the genus Carcharhinus. J Morphol 152:341–362.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1978) The relation of inner ear structure to the feeding behavior in sharks and rays. In: Johari OM (ed) Scanning Electron Microscopy/1978, vol. 2. Chicago: SEM, pp. 1105–1112.

    Google Scholar 

  • Corwin JT (1981a) Audition in elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 81–105.

    Google Scholar 

  • Corwin JT (1981b) Postembryonic production and aging in inner ear hair cells in sharks. J Comp Neurol 201:541–553.

    CAS  Google Scholar 

  • Corwin JT (1983) Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: continual increases in hair cell number, neural convergence, and physiological sensitivity. J Comp Neurol 217:345–356.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1985) Perpetual production of hair cells and maturational changes in hair cell ultrastructure accompany postembryonic growth in an amphibian ear. Proc Natl Acad Sci USA 82:3911–3915.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1989) Functional anatomy of the auditory system in sharks and rays. J Exp Zool Suppl 2:62–74.

    Google Scholar 

  • Corwin JT, Warchol ME (1991) Auditory hair cells: structure, function, development and regeneration. Annu Rev Neurosci 14:301–333.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol (Lond) 312:377–412.

    CAS  Google Scholar 

  • Dallos P (1996) Overview: cochlear neurobiology. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 1–43.

    Google Scholar 

  • De Boer E, de Jongh HR (1978) On cochlear coding: potentialities and limitations of the reverse correlation technique. J Acoust Soc Am 63:115–135.

    PubMed  Google Scholar 

  • Denton EJ, Gray JAB (1980) Receptor activity in the utriculus of the sprat. J Mar Biol Assoc UK 60:717–740.

    Google Scholar 

  • Denton EJ, Gray JAB (1983) Stimulation of the acoustico-lateralis system of clupeid fish by external sources and their own movements. Philos Trans R Soc Lond [B] 341:113–127.

    Google Scholar 

  • Denton EJ, Gray JAB (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz P (eds) The Mechanosensory Lateral Line—Neurobiology and Evolution. New York: Springer-Verlag, pp. 229–246.

    Google Scholar 

  • De Vries HL (1950) The mechanics of the labyrinth otoliths. Acta Otolaryngol 38:262–273.

    Google Scholar 

  • Dunkelberger DG, Dean JM, Watabe N (1980) The ultrastructure of the otolithic membrane and otolith of juvenile mummichog. J Morphol 163:367–377.

    Google Scholar 

  • Edds PL, Presson J, Popper AN (1989) A comparison of saccular innervation in the goldfish (Carassius auratus), an otophysan, and the oscar (Astronotus ocellatus), an acanthopterygian. Abstr Assoc Res Otolaryngol 12:77–78.

    Google Scholar 

  • Edds-Walton PL, Highstein SM, Fay RR (1996) Characteristics of directional audi-tory afferents in the toadfish (Opsanus tau). Soc Neurosci Abstr 178:447.

    Google Scholar 

  • Enger PS (1963) Single unit activity in the peripheral auditory system of a teleost fish. Acta Physiol Scand 59(suppl 210):9–48.

    Google Scholar 

  • Fay RR (1978a) Coding of information in single auditory nerve fibers of the goldfish. J Acoust Soc Am 63:136–146.

    CAS  Google Scholar 

  • Fay RR (1978b) Phase-locking in goldfish saccular nerve fibers accounts for frequency discrimination capacities. Nature 275:320–322.

    CAS  Google Scholar 

  • Fay RR (1980) Psychophysics and neurophysiology of temporal factors in hearing by the goldfish: amplitude modulation detection. J Neurophysiol 44:312–332.

    PubMed  CAS  Google Scholar 

  • Fay RR (1981) Coding of acoustic information in the eighth nerve. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 189–222.

    Google Scholar 

  • Fay RR (1984) The goldfish ear codes the axis of particle motion in three dimensions. Science 225:951–953.

    PubMed  CAS  Google Scholar 

  • Fay RR (1985) Sound intensity processing by the goldfish. J Acoust Soc Am 78:1296–1309.

    PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay RR (1990) Suppression and excitation in auditory nerve fibers of the goldfish, Carassius auratus. Hear Res 48:93–110.

    PubMed  CAS  Google Scholar 

  • Fay RR (1991) Masking and suppression in auditory nerve fibers of the goldfish, Carassius auratus. Hear Res 55:177–187.

    PubMed  CAS  Google Scholar 

  • Fay RR (1997) Frequency selectivity of saccular afferents of the goldfish revealed by revcor analysis. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds) Diversity in Auditory Mechanics. Singapore: World Scientific Publishers. pp. 69–75.

    Google Scholar 

  • Fay RR, Coombs SL (1983) Neural mechanisms in sound detection and temporal summation. Hear Res 10:69–92.

    PubMed  CAS  Google Scholar 

  • Fay RR, Edds-Walton PL (1997a) Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res, 111:1–21.

    CAS  Google Scholar 

  • Fay RR, Edds-Walton PL (1997b) Diversity in frequency response properties of saccular afferents of the toadfish (Opsanus tau). Hear Res, 113:235–246.

    CAS  Google Scholar 

  • Fay RR, Feng A (1987) Directional hearing among nonmammalian vertebrates. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Springer-Verlag, pp. 179–213.

    Google Scholar 

  • Fay RR, Olsho LW (1979) Discharge patterns of lagenar and saccular neurons of the goldfish eighth nerve: displacement sensitivity and directional characteristics. Comp Biochem Physiol 62:377–386.

    Google Scholar 

  • Fay RR, Ream Ti (1986) Acoustic response and tuning in saccular nerve fibers of the goldfish (Carassius auratus). J Acoust Soc Am 79:1883–1895.

    PubMed  CAS  Google Scholar 

  • Fay RR, Ahroon WA, Orawski AA (1978) Auditory masking patterns in the goldfish (Carassius auratus): psychophysical tuning curves. J Exp Biol 74:83–100.

    PubMed  CAS  Google Scholar 

  • Fay RR, Hillery CM, Bolan K (1982) Representation of sound pressure and particle motion information in the midbrain of the goldfish. Comp Biochem Physiol 71:181–191.

    CAS  Google Scholar 

  • Fay RR, Yost WA, Coombs SL (1983) Repetition noise processing by a vertebrate auditory system. Hear Res 12:31–55.

    PubMed  CAS  Google Scholar 

  • Fay RR, Edds-Walton PL, Highstein SM (1994) Directional sensitivity of saccular afferents of the toadfish to linear acceleration at audio frequencies. Biol Bull 187:258–259.

    PubMed  CAS  Google Scholar 

  • Fay RR, Edds-Walton PL, Highstein SM (1996a) Tuning in saccular afferents of the toadfish revealed by the reverse correlation method. Biol Bull 191:255–257.

    Google Scholar 

  • Fay RR, Chronopoulos M, Patterson RD (1996b) The sound of a sinusoid: perception and neural representations in the goldfish (Carassius auratus). Aud Neurosci 2:377–392.

    Google Scholar 

  • Fish JF, Offutt GC (1972) Hearing thresholds from toadfish, Opsanus tau, measured in the laboratory and field. J Acoust Soc Am 51:1318–1321.

    PubMed  CAS  Google Scholar 

  • Flock A (1965) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol Suppl 199:1–90.

    Google Scholar 

  • Flock A (1971) Sensory transduction in hair cells. In: Lowenstein WR (ed) Handbook of Sensory Physiology, vol. 1. Principles of Receptor Physiology. Berlin: Springer-Verlag, pp. 396–411.

    Google Scholar 

  • Forge A, Li L, Nevill G (1995) Mammalian vestibular hair cell regeneration. Science 267:706–707.

    PubMed  CAS  Google Scholar 

  • Furukawa T (1978) Sites of termination on the saccular macula of auditory nerve fibers in the goldfish as determined by intracellular injection of procion yellow. J Comp Neurol 180:807–814.

    PubMed  CAS  Google Scholar 

  • Furukawa T (1981) Effects of efferent stimulation of the saccule of goldfish. J Physiol (Lond) 315:203–215.

    CAS  Google Scholar 

  • Furukawa T (1986) Sound reception and synaptic transmission in goldfish hair cells. Jpn J Physiol 36:1059–1077.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Ishii Y (1967) Neurophysiological studies on hearing in goldfish. J Neurophysiol 30:1377–1403.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Ishii Y, Matsuura S (1972) Synaptic delay and time course of post synaptic potentials at the junction of hair cells and eighth nerve fibers of the goldfish. Jpn J Physiol 22:617–635.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Hayashida Y, Matsuura S (1978) Quantal analysis of the size of excitatory postsynaptic potentials at synapses between hair cells and afferent nerve fibers in goldfish. J Physiol (Lond) 276:211–226.

    CAS  Google Scholar 

  • Furukawa T, Kuno M, Matsuura S (1982) Quantal analysis of a decremental response at hair cell-afferent fibre synapses in the goldfish sacculus. J Physiol (Lond) 322:181–195.

    CAS  Google Scholar 

  • Gauldie RW (1996) Fusion of otoconia: a stage in the development of the otolith in the evolution of fishes. Acta Zool 77:1–23.

    Google Scholar 

  • Grozinger B (1967) Elektro-physiologische Untersuchungen an der Hörbahn der Schleie (Tinca tinca [L.]). Z Vergl Physiol 57:44–76.

    Google Scholar 

  • Guinan JJ Jr (1996) Physiology of olivocochlear efferents. In: Dallos P, Popper AN, Fay RR (eds) New York: Springer-Verlag, pp. 435–502.

    Google Scholar 

  • Hawkins AD, Chapman CJ (1975) Masked auditory thresholds in the cod Gadus morhua L. J Comp Physiol 103A:209–226.

    Google Scholar 

  • Hawkins AD, Homer K (1981) Directional characteristics of primary auditory neurons from the codfish ear. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 311–328.

    Google Scholar 

  • Henry KH, Lewis ER (1992) One-tone suppression in the cochlear nerve of the gerbil. Hear Res 63:1–6.

    PubMed  CAS  Google Scholar 

  • Hill K, Mo J, Stange G (1989a) Induced suppression in spike response to tone-on-noise stimuli in the auditory nerve of the pigeon. Hear Res 39:49–62.

    CAS  Google Scholar 

  • Hill K, Mo J, Stange G (1989b) Excitation and suppression of primary auditory fibers in the pigeon. Hear Res 39:37–48.

    CAS  Google Scholar 

  • Hill K, Stange G, Gummer A, Mo J (1989c) A model proposing synaptic and extra-synaptic influences on the responses of cochlear nerve fibers. Hear Res 39:75–90.

    CAS  Google Scholar 

  • Holton T, Weiss TF (1983) Frequency selectivity of hair cells and nerve fibers in the alligator lizard cochlea. J Physiol (Lond) 345:241–260.

    CAS  Google Scholar 

  • Homer K, Hawkins A, Fraser P (1981) Frequency characteristics of primary auditory neurons from the ear of the cod, Gadus morhua L. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 223–242.

    Google Scholar 

  • Homer K, Sand O, Enger P (1980) Binaural interaction in the cod. J Exp Biol 85:323–331.

    Google Scholar 

  • Hoshino T (1975) An electron microscopic study of the otolithic maculae of the lamprey (Entosephenus japonicus). Acta Otolaryngol 80:43–53.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1983) Transduction and tuning by vertebrate hair cells. Trends Neurosci 6:366–369.

    Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    PubMed  CAS  Google Scholar 

  • Ishii Y, Matsuura S, Furukawa T (1971) Quantal nature of transmission at the synapse between hair cells and eight nerve fibers. Jpn J Physiol 21:79–89.

    PubMed  CAS  Google Scholar 

  • Jarvick E (1980) Basic Structure of Evolution of the Vertebrates, Vol. 1. New York: Academic Press.

    Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    PubMed  CAS  Google Scholar 

  • Jorgensen JM, Mathiesen C (1988) The avian inner ear: continuous production of hair cells in vestibular sensory organs, but not in the auditory papilla. Naturwissenschaften 75:319–320.

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1988a) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Kalmijn AJ (1988b) Detection of weak electric fields. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 151–186.

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear systems. In: Coombs S, Görner P, Münz P (eds) The Mechanosensory Lateral Line—Neurobiology and Evolution. New York: Springer-Verlag, pp. 187–216.

    Google Scholar 

  • Köppl C, Manley G (1992) Functional consequences of morphological trends in the evolution of lizard hearing organs. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 489–510.

    Google Scholar 

  • Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity of the bullfrog ear. Brain Res 250:168–172.

    PubMed  CAS  Google Scholar 

  • Kros CJ (1996) Physiology of mammalian cochlear hair cells. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 318–385.

    Google Scholar 

  • Lanford PJ, Popper AN (1994) Heterogeneity of hair cell populations in the otic endorgans of the goldfish, Carassius auratus. Abstr Assoc Res Otolaryngol 17:96.

    Google Scholar 

  • Lanford PJ, Popper AN (1996) A unique afferent structure in the crista ampullaris of the goldfish. J Comp Neurol 366:572–579.

    PubMed  CAS  Google Scholar 

  • Lanford PJ, Presson JC, Popper AN (1996) Cell proliferation and hair cell addition in the ear of the goldfish, Carassius auratus. Hear Res 100:1–9.

    PubMed  CAS  Google Scholar 

  • Lewis ER (1986) Adaptation, suppression, and tuning in amphibian acoustical fibers. In: Moore BCJ, Patterson R (eds) Auditory Frequency Selectivity. New York: Plenum, pp. 129–136.

    Google Scholar 

  • Lewis E (1992) Convergence and design in vertebrate acoustic sensors. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 163–184.

    Google Scholar 

  • Lombarte A, Popper AN (1994) Quantitative analyses of postembryonic hair cell addition in the otolithic endorgans of the inner ear of the European hake, Merluccius merluccius (Gadiformes, Teleostei). J Comp Neurol 345:419–428.

    PubMed  CAS  Google Scholar 

  • Long JA (1995) The Rise of Fishes. Baltimore, MD: The Johns Hopkins University Press.

    Google Scholar 

  • Lowenstein O (1970) The electrophysiological study of the responses of the isolate labyrinth of the lamprey (Lampetra fluviatilis) to angular acceleration, tilting and mechanical vibration. Proc R Soc Lond [B] 174:419–434.

    CAS  Google Scholar 

  • Lowenstein O, Thornhill RA (1970) The labyrinth of Myxine, anatomy, ultrastructure and electrophysiology. Proc R Soc Lond [B] 176:21–42.

    Google Scholar 

  • Lowenstein O, Osborne MP, Wersäll J (1964) Structure and innervation of the sensory epithelia of the labyrinth in the thornback ray (Raja clavata). Proc R Soc Lond [B] 160:1–12.

    CAS  Google Scholar 

  • Lowenstein O, Osborne MP, Thornhill RA (1968) The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.). Proc R Soc Lond [B] 170:113–134.

    CAS  Google Scholar 

  • Lu Z, Fay RR (1993) Acoustic response properties of single units in the torus semicircularis of the goldfish. J Comp Physiol A 173:33–48.

    PubMed  CAS  Google Scholar 

  • Lu Z, Fay RR (1996) Two-tone interaction in auditory nerve fibers and midbrain neurons of the goldfish, Carassius auratus. Aud Neurosci 2:257–273.

    Google Scholar 

  • Lu Z, Popper AN, Fay RR (1996) Behavioral detection of acoustic particle motion by a teleost fish, Astronotus ocellatus. J Comp Physiol A 179:227–233.

    PubMed  CAS  Google Scholar 

  • Lu Z, Popper AN (1997) Encoding of acoustic particle motion by saccular ganglion cells of a fish: Intracellular recording and tracing. Soc Neurosci Abst 23:180.

    Google Scholar 

  • Lu Z, Song J, Popper AN (1998) Encoding of acoustic directional information by saccular afferents of the sleeper goby, Dormitator latifrons. J Comp Physiol A, in press.

    Google Scholar 

  • Ma D, Fay RR (1996) Directional response properties of cells of the goldfish midbrain. J Acoust Soc Am 100:2786.

    Google Scholar 

  • Manley G (1990) Peripheral Hearing Mechanisms of Reptiles and Birds. New York: Springer-Verlag.

    Google Scholar 

  • Manley GA, Gleich O (1992) Evolution and specialization of function in the avian auditory periphery. In: Webster DB, Fay RR, Popper AN (eds) Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 561–580.

    Google Scholar 

  • Mann DA, Lu Z, Popper AN (1977) Ultrasound detection by a teleost fish. Nature 389:341.

    Google Scholar 

  • Mathiesen C, Popper AN (1987) The ultrastructure and innervation of the ear of the gar, Lepisosteus osseus. J Morphol 194:129–142.

    PubMed  CAS  Google Scholar 

  • McCormick CA (1978) Central projections of the lateralis and eighth nerves in the bowfin, Amia calva. Doctoral Thesis, University of Michigan.

    Google Scholar 

  • McCormick CA (1982) The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J Morphol 171:159–181.

    Google Scholar 

  • McCormick CA, Popper AN (1984) Auditory sensitivity and psychophysical tuning curves in the elephant nose fish, Gnathonemus petersii. J Comp Physiol 155:753–761.

    Google Scholar 

  • Moeng RR, Popper AN (1984) Auditory response of saccular neurons of the catfish, Ictalurus punctatus. J Comp Physiol 155:615–624.

    Google Scholar 

  • Nelson, JS (1994) Fishes of the World, 3rd ed. New York: Wiley.

    Google Scholar 

  • Northcutt RG (1980) Central auditory pathways in anamniotic vertebrates. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 79–118.

    Google Scholar 

  • Parvulescu A (1964) Problems of propagation and processing. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford: Pergamon Press, pp. 87–100.

    Google Scholar 

  • Parvulescu A (1967) The acoustics of small tanks. In: Tavolga WN (ed) Marine Bio-Acoustics II. Oxford: Pergamon Press, pp. 7–14.

    Google Scholar 

  • Patuzzi R (1996) Cochlear micromechanics and macromechanics. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 186–257.

    Google Scholar 

  • Platt C (1977) Hair cell distribution and orientation in goldfish otolith organs. J Comp Neurol 172:283–297.

    PubMed  CAS  Google Scholar 

  • Platt C (1994) Hair cells in the lagenar otolith organ of the coelacanth are unlike those in amphibians. J Morphol 220:381.

    Google Scholar 

  • Platt C, Popper AN (1981) Structure and function in the ear. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 3–38.

    Google Scholar 

  • Platt C, Popper AN (1984) Variation in lengths of ciliary bundles on hair cells along the macula of the sacculus in two species of teleost fishes. SEM/1984 1915–1924.

    Google Scholar 

  • Platt C, Popper AN (1996) Sensory hair cell arrays in lungfish inner ears suggest retention of the primitive patterns for bony fishes. Soc Neurosci Abstr 22:1818.

    Google Scholar 

  • Popper AN (1971) The effects of size on the auditory capacities of the goldfish.J Aud Res 11:239–247.

    Google Scholar 

  • Popper AN (1977) A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes. J Morphol 153:397–418.

    Google Scholar 

  • Popper AN (1978) Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorynchus). J Comp Neurol 18:117–128.

    Google Scholar 

  • Popper AN (1981) Comparative scanning electron microscopic investigations of the sensory epithelia in the teleost sacculus and lagena. J Comp Neurol 200:357–374.

    PubMed  CAS  Google Scholar 

  • Popper AN (1983) Organization of the inner ear and processing of acoustic information. In: Northcutt RG, Davis RE (eds) Fish Neurobiology and Behavior. Ann Arbor, MI: University of Michigan Press, pp. 125–178.

    Google Scholar 

  • Popper AN, Coombs S (1982) The morphology and evolution of the ear in Actinopterygian fishes. Am Zool 22:311–328.

    Google Scholar 

  • Popper AN, Fay RR (1977) Structure and function of the elasmobranch anditory system. Am Zool 17:443–452.

    Google Scholar 

  • Popper AN, Fay RR (1993) Sound detection and processing by fish: critical review and major research questions. Brain Behav Evol 41:14–38.

    PubMed  CAS  Google Scholar 

  • Popper AN, Fay RR (1997) Evolution of the ear and hearing: Issues and questions. Brain Behav Evol 50:213–221.

    PubMed  CAS  Google Scholar 

  • Popper AN, Hoxter B (1984) Growth of a fish ear: 1. Quantitative analysis of sensory hair cell and ganglion cell proliferation. Hear Res 15:133–142.

    PubMed  CAS  Google Scholar 

  • Popper AN, Hoxter B (1987) Sensory and nonsensory ciliated cells in the ear of the sea lamprey, Petromyzon marinus. Brain Behav Evol 30:43–61.

    PubMed  CAS  Google Scholar 

  • Popper AN, Northcutt RG (1983) Structure and innervation of the inner ear of the bowfin, Amia calva. J Comp Neurol 213:279–286.

    PubMed  CAS  Google Scholar 

  • Popper AN, Platt C (1979) The herring ear has a unique receptor pattern. Nature 280:832–833.

    PubMed  CAS  Google Scholar 

  • Popper AN, Platt C (1983) Sensory surface of the saccule and lagena in the ears of ostariophysan fishes. J Morphol 176:121–129.

    Google Scholar 

  • Popper AN, Platt C (1993) Inner ear and lateral line of bony fishes. In: Evans DH (ed) The Physiology of Fishes. Boca Raton, FL: CRC Press, pp. 99–136.

    Google Scholar 

  • Popper AN, Saidel WM (1990) Variations in receptor cell innervation in the saccule of a teleost fish ear. Hear Res 46:211–227.

    PubMed  CAS  Google Scholar 

  • Popper AN, Tavolga WN (1981) Structure and function of the ear of the marine catfish, Arius felis. J Comp Physiol 144:27–34.

    Google Scholar 

  • Popper AN, Salmon M, Parvulescu A (1973) Sound localization by two species of Hawaiian squirrelfish, Myripristis berndti and M. argyromus. Anim Behav 21:86–97.

    PubMed  CAS  Google Scholar 

  • Popper AN, Rogers PH, Saidel WM, Cox M (1988) The role of the fish ear in sound processing. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 687–710.

    Google Scholar 

  • Popper AN, Platt C, Edds P (1992) Evolution of the vertebrate inner ear: an overview of ideas. In: Webster DB, Fay RR, Popper AN (eds) Comparative Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 49–57.

    Google Scholar 

  • Popper AN, Saidel WM, Chang JSY (1993) Two types of sensory hair cell in the saccule of a teleost fish. Hear Res 66:211–216.

    Google Scholar 

  • Presson JC, Popper AN (1990) A ganglionic source of new eighth nerve neurons in a post-embryonic fish. Hear Res 46:23–38.

    PubMed  CAS  Google Scholar 

  • Presson JC, Edds PE, Popper AN (1992) Central-peripheral and rostral-caudal organization of the innervation of the saccule in a cichlid fish. Brain Behav Evol 39:196–207.

    Google Scholar 

  • Presson JC, Lanford PJ, Popper AN (1996) Hair cell precursors are ultrastructurally indistinguishable from mature support cells in the ear of a postembryonic fish. Hear Res 100:10–20.

    PubMed  CAS  Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere, vol. 1. Stockholm: Samson and Wallin.

    Google Scholar 

  • Roberts BL, Meredith, GE (1992) The efferent innervation of the ear: variations on an enigma. In: Webster DB, Fay RR, Popper AN (eds) Comparative Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 185–210.

    Google Scholar 

  • Roberts BL, Russell IJ (1972) The activity of lateral-line efferent neurones in stationary and swimming dogfish. J Exp Biol 57:435–448.

    PubMed  CAS  Google Scholar 

  • Rogers PH, Cox M (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 131–149.

    Google Scholar 

  • Rogers PH, Popper AN, Cox M, Saidel WM (1988) Processing of acoustic signals in the auditory system of bony fish. J Acoust Soc Am 83:338–349.

    PubMed  CAS  Google Scholar 

  • Rubel EW, Dew LA, Roberson DW (1995) Mammalian vestibular hair cell regeneration. Science 267:701–703.

    PubMed  CAS  Google Scholar 

  • Ruggero M (1992) Physiology and coding of sound in the auditory nerve. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 34–93.

    Google Scholar 

  • Sachs M, Kiang NY-S (1968) Two-tone inhibition in auditory nerve fibers. J Acoust Soc Am 43:1120–1128.

    PubMed  CAS  Google Scholar 

  • Saidel WM, Crowder JA (1997) Expression of cytochrome oxidase in hair cells of the teleost utricle. Hear Res 109:63–77.

    PubMed  CAS  Google Scholar 

  • Saidel WM, Popper AN (1983a) Spatial organization in the saccule and lagena of a teleost: hair cell pattern and innervation. J Morphol 177:301–317.

    CAS  Google Scholar 

  • Saidel WM, Popper AN (1983b) The saccule may be the transducer for directional hearing of nonostariophysine teleosts. Exp Brain Res 50:149–152.

    CAS  Google Scholar 

  • Saidel WM, Popper AN (1987) Sound reception in two anabantid fishes. Comp Biochem Physiol 88A:37–44.

    Google Scholar 

  • Saidel WM, Presson JC, Chang JS (1990) S-100 immunoreactivity identifies a subset of hair cells in the utricle and saccule of a fish. Hear Res 47:139–146.

    PubMed  CAS  Google Scholar 

  • Saidel WM, Lanford PJ, Yan HY, Popper AN (1995) Hair cell heterogeneity in the goldfish saccule. Brain Behav Evol 46:362–370.

    PubMed  CAS  Google Scholar 

  • Sans A, Highstein SM (1984) New ultrastructural features in the vestibular labyrinth of the toadfish, Opsanus tau. Brain Res 308:191–195.

    PubMed  CAS  Google Scholar 

  • Schellart NAM, de Munck JC (1987) A model for directional and distance hearing in swimbladder-bearing fish based on the displacement orbits of the hair cells. J Acoust Soc Am 82:822–829.

    PubMed  CAS  Google Scholar 

  • Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system of Actinopterygian fish. In: Webster DB, Fay RR, Popper AN (eds) Comparative Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 295–322.

    Google Scholar 

  • Schuijf A (1975) Directional hearing of cod (Gadus morhua) under approximate free field conditions. J Comp Physiol 98:307–332.

    Google Scholar 

  • Schuijf A, Buwalda RJA (1980) Underwater localization—a major problem in fish acoustics. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 43–77.

    Google Scholar 

  • Schuijf A, Hawkins AD (1983) Acoustic distance discrimination by the cod. Nature 302:143–144.

    Google Scholar 

  • Sento S, Furukawa T (1987) Intra-axonal labeling of saccular afferents in the goldfish, Carassius auratus: correlations between morphological and physiological characteristics. J Comp Neurol 258:352–367.

    PubMed  CAS  Google Scholar 

  • Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 44–129.

    Google Scholar 

  • Song J, Yan HYY, Popper AN (1996). Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hear Res 91:63–71.

    Google Scholar 

  • Spoendlin H (1964) Organization of the sensory hairs in the gravity receptors in the utricle and saccule of the squirrel monkey. Z Zellforsch 62:701–716.

    PubMed  CAS  Google Scholar 

  • Steinacker A, Romero A (1992) Voltage-gated potassium current resonance in the toadfish saccular hair cell. Brain Res 574:229–236.

    PubMed  CAS  Google Scholar 

  • Stensiö E (1927) The Downtonian and Devonian vertebrates of Spitzberg, I. Cephalaspidae. Skr Svalb Ish 12:1–391.

    Google Scholar 

  • Stipetie E (1939) Über des Gehörorgan der Mormyriden. Z Vergl Physiol 26:740–752.

    Google Scholar 

  • Sugihara I, Furukawa T (1989) Morphological and functional aspects of two different types of hair cells in the goldfish sacculus. J Neurophysiol 62:1330–1343.

    PubMed  CAS  Google Scholar 

  • Suzue T, Wu G-B, Furukawa T (1987) High susceptibility to hypoxia of afferent synaptic transmission in the goldfish sacculus. J Neurophysiol 58:1066–1079.

    PubMed  CAS  Google Scholar 

  • Tavolga WN (ed) (1964) Marine Bio-Acoustics. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Tavolga WN (ed) (1967) Marine Bio-Acoustics, II. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Tavolga WN, Wodinsky J (1963) Auditory capacities in fishes. Pure tone thresholds in nine species of marine teleosts. Bull Am Mus Nat Hist 126:177–240.

    Google Scholar 

  • Tester AL, Kendall JI, Milisen WB (1972) Morphology of the ear of the shark genus Carcharhinus, with particular reference to the macula neglecta. Pac Sci 26:264–274.

    Google Scholar 

  • Tricas TC, Highstein SM (1990) Visually mediated inhibition of lateral line primary afferent activity by the octavolateralis efferent system during predation in the free-swimming toadfish, Opsanus tau. Exp Brain Res 83:233–236.

    PubMed  CAS  Google Scholar 

  • Tricas TC, Highstein SM (1991) Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. J Comp Physiol 169:25–37.

    CAS  Google Scholar 

  • Van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • Von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill. Von Frisch K (1936) Über den Gehorsinn der Fische. Biol Rev 11:210–246.

    Google Scholar 

  • Von Frisch K (1938) Über die Bedeutung des Sacculus und der Lagena Mr den Gehorsinn der Fische. Z Vergl Physiol 25:703–747.

    Google Scholar 

  • Von Frisch K, Stetter H (1932) Untersuchungen über den Sitz des Gohörsinnes bei der Elritze. Z Vergl Physiol 17:686–801.

    Google Scholar 

  • Weber EH (1820) De Aure et Auditu Hominis et Animalium. Pars I. De Aure Animalium Aquatilium. Leipzig: Gerhard Fleischer.

    Google Scholar 

  • Wegner N (1982) A qualitative and quantitative study of a sensory epithelium of the inner ear of a fish (Colisa labiosa; Anabantidae). Acta Zool (Stockh) 63:33–146.

    Google Scholar 

  • Wegner NT (1979) The orientation of hair cells in the otolithic organs and papilla neglecta in the inner ear of the Anabantid fish Colisa labiosa (Day). Acta Zool (Stockh) 60:205–216.

    Google Scholar 

  • Weiss TF, Mulroy MJ, Turner RG, Pike CL (1976) Tuning of single fibers in the cochlear nerve of the alligator lizard: relation to receptor morphology. Brain Res 115:71–90.

    PubMed  CAS  Google Scholar 

  • Wersäll J, Flock AI, Lundquist P-G (1965) Structural basis for directional sensitivity in cochlear vestibular sensory structures. Cold Spring Harbor Symp 30:115–132.

    Google Scholar 

  • Weyer EG (1949) Theory of Hearing. New York: Wiley.

    Google Scholar 

  • Weyer EG (1974) The evolution of vertebrate hearing. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, vol. V/1, Auditory System. Berlin: Springer-Verlag, pp. 423–454.

    Google Scholar 

  • Wightman FL, Kistler DJ, Arruda M (1991) Monaural localization, revisited. J Acoust Soc Am 89:1995.

    Google Scholar 

  • Wohlfahrt TA (1933) Anatomische Untersuchungen über das Labyrinth der Elritze (Phoxinus laevis L.). Z Vergl Physiol 17:659–685.

    Google Scholar 

  • Wubbels RJ, Kroese ABA, Schellart NAM (1993) Response properties of the lateral line and auditory unites in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss). J Exp Biol 179:77–92.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Popper, A.N., Fay, R.R. (1999). The Auditory Periphery in Fishes. In: Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Fish and Amphibians. Springer Handbook of Auditory Research, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0533-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0533-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6806-2

  • Online ISBN: 978-1-4612-0533-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics