Nanotechnology pp 331-369 | Cite as

Self-Assembly and Self-Assembled Monolayers in Micro- and Nanofabrication

  • James L. Wilbur
  • George M. Whitesides

Abstract

Despite the extraordinary success of current techniques for microfabrication, new techniques are needed. One reason is scale: optically based lithography is reaching the lower limits for the size of features it can produce (˜100 nm). Another is efficiency: methods such as electron beam lithography are presently linear processes and will require significant development if they are to be used for large scale, high volume processing. Other considerations such as capital and processing costs, waste management, environmental concerns, and the degree of perfection of the final structures may also force the development of new methods for microfabrication.

Keywords

Titanium Nickel Corn Sulfide Chromium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Whitesides G. M., Mathias J. P., Seto C. T., Science 254, 1312–1319 (1991)CrossRefGoogle Scholar
  2. [2]
    Lindsey J.S., New J. Chem. 15, 153–180 (1991)Google Scholar
  3. [3]
    Varner J.E., The 46th Symposium of the Society for Developmental Biology: SelfAssembling Architecture, New York: Alan R. Liss, Inc., 1988, p.276Google Scholar
  4. [4]
    Kossovsky N., et al., Bio/Technology, 11, 1534–1536 (1993)CrossRefGoogle Scholar
  5. [5]
    McGrath K.P., Kaplan D.L., “Biological self-assembly: a paradigm for materials science,” in Mater. Res. Soc. Symp. Proc., (Biomaterials by Design) 330, 1994, pp.61–68CrossRefGoogle Scholar
  6. [6]
    Creighton T.E., Proteins: Structure and Molecular Properties, Freeman, New York: 1983Google Scholar
  7. [7]
    Sanger W., Principles of Nucleic Acid Structure, New York: Springer-Verlag, 1986Google Scholar
  8. [8]
    Kim E., Whitesides G.M., J. Am. Chem. Soc., (submitted)Google Scholar
  9. [9]
    For a review of hydrogen bonded aggregates see:Simanek E.E.et al., Ace. Chem. Res. 28, 37–44 (1995)Google Scholar
  10. [10]
    Archibald D.D., Mann S., Nature 364, 430–433 (1993)CrossRefGoogle Scholar
  11. [11]
    Heywood B., Mann S., Chem. Mat. 6, 311–318 (1994)CrossRefGoogle Scholar
  12. [12]
    Leff D.V., et al., J. Phys. Chem. 99, 7036–7041 (1995)CrossRefGoogle Scholar
  13. [13]
    Menger F.M., Angew. Chem. Int. Ed. Engl. 30, 1086–1099 (1991)CrossRefGoogle Scholar
  14. [14]
    Dawson K.A., Nato Asi Ser., Ser. C (1992)Google Scholar
  15. [15]
    Gompper G., Schick M., Phase Transitions Crit. Phenom (1994)Google Scholar
  16. [16]
    deGennes P.-G. The Physics of Liquid Crystals, New York: 2nd ed. Oxford Univer sity Press, New York, 1993, Vol. 83Google Scholar
  17. [17]
    DeSantis P., Morosetti S., Rizzo R., Macromolecules 7, 52–58 (1974)CrossRefGoogle Scholar
  18. [18]
    Tomasic L., Lorenzi G.P., Helv. Chim. Acta 70, 1012–1016 (1987)CrossRefGoogle Scholar
  19. [19]
    Ghadiri M.R., et al., Nature 366, 324–327 (1993)CrossRefGoogle Scholar
  20. [20]
    Ghadiri M.R., Granja J.R., Buehler L.K., Nature 369, 301–304 (1994)CrossRefGoogle Scholar
  21. [21]
    Borra E.F., et al., Astrophysical Journal 393, 829–847 (1992)CrossRefGoogle Scholar
  22. [22]
    Hubin N., Noethe L., Science 262, 1390–1394 (1993)CrossRefGoogle Scholar
  23. [23]
    Borra E.F., Scientific American 76–81 (February 1994)Google Scholar
  24. [24]
    Popovic Z. D., Sprague R.A., Neville-Connell G.A., AppL Opt. 27, 1281–1284 (1988)CrossRefGoogle Scholar
  25. [25]
    Georges J. M., et al., Nature 320, 342–344 (1986)CrossRefGoogle Scholar
  26. [26]
    Noshay A., McGrath J.E., Block Copolymers: Overview and Critical Survey, New York: Academic Press, 1977Google Scholar
  27. [27]
    For reviews see: Bain C.D., Whitesides G.M., Angew. Chem. Int. Ed. Engl. 28, 506–512 (1989); Whitesides, G.M., Laibinis, P.E., Langmuir 6, 87-96 (1990); Ulman, A., J. Mater. Educ 11, 205-80 (1989); Ulman, A., An Introduction to Ultrathin Organic Films, San Diego: Academic Press, 1991; Dubois, L.H., Nuzzo, R.G., Ann. Rev. Phys. Chem. 43, 437-463 (1992). Bard, A.J., et al., J. Phys. Chem. 97, 7147-7173 (1993). Whitesides, G.M., Gorman, C.B., in Handbook of Surface Imaging and Visualization, Hubbard, A.T., ed., Boca Raton: CRC Press, (in press)CrossRefGoogle Scholar
  28. [28]
    For a review of LB films see: Ulman A., An Introduction to Ultrathin Organic Films, San Diego, CA.: Academic Press, 1991; Ulman, A., J. Mater. Educ 11, 205-280 (1989), and references thereinGoogle Scholar
  29. [29]
    Bain CD., Evall J., Whitesides G.M., J. Am. Chem. Soc. 1ll, 7155–7164 (1989)CrossRefGoogle Scholar
  30. [30]
    Bain C.D., Whitesides G.M., J. Am. Chem. Soc. 1ll, 7164–7175 (1989)CrossRefGoogle Scholar
  31. [31]
    Wasserman S.R., Tao Y.T., Whitesides G.M., Langmuir 5, 1074–1087 (1989)CrossRefGoogle Scholar
  32. [32]
    Wasserman S.R., et al., J. Am. Chem. Soc. 1ll, 5852–5861 (1989)CrossRefGoogle Scholar
  33. [33]
    Nakagawa O.S., et al., Jpn. J. Appl. Phys., Part 30, 3759–3762 (1991)CrossRefGoogle Scholar
  34. [34]
    Bain C.D., Adv. Mat. 4, 591–594 (1992)CrossRefGoogle Scholar
  35. [35]
    Tiberio R.C., et al., Appl Phys. Lett. 62, 476–478 (1993)CrossRefGoogle Scholar
  36. [36]
    Li T.T.T., Waever M.J., J. Am. Chem. Soc. 106, 6107–6108 (1984)CrossRefGoogle Scholar
  37. [37]
    Porter M.D., et al., J Am. Chem. Soc. 109, 3559–3568 (1987)CrossRefGoogle Scholar
  38. [38]
    Bain C.D., Whitesides G.M., Science 240, 62–63 (1988)CrossRefGoogle Scholar
  39. [39]
    Bain C.D., Whitesides G.M., J. Am. Chem. Soc. 110, 3665–3666 (1988)CrossRefGoogle Scholar
  40. [40]
    Bain C.D., et al., J. Am. Chem. Soc. 1ll, 321–335 (1989)CrossRefGoogle Scholar
  41. [41]
    Bain C.D., Biebuyck H.A., Whitesides G.M., Langmuir 5, 723–727 (1989)CrossRefGoogle Scholar
  42. [42]
    Bain C.D., Whitesides G.M., Angew. Chem. Int. Ed. Engl. 28, 506–512 (1989)CrossRefGoogle Scholar
  43. [43]
    Nuzzo R.G., Allara D.L., J. Am. Chem. Soc. 105, 4481–4483 (1983)CrossRefGoogle Scholar
  44. [44]
    Troughton E.B., et al., Langmuir 4, 365–385 (1988)CrossRefGoogle Scholar
  45. [45]
    Sagiv J., J. Am. Chem. Soc. 102, 92–98 (1980)CrossRefGoogle Scholar
  46. [46]
    Netzer L., Sagiv J., J. Am. Chem. Soc. 105, 674–676 (1983)CrossRefGoogle Scholar
  47. [47]
    Maoz R., Sagiv J., J. Colloid Interface Sci. 100, 465–496 (1984)CrossRefGoogle Scholar
  48. [48]
    Hoffmann H., Mayer U., Krischanitz A., Langmuir 11, 1304–1312 (1995)CrossRefGoogle Scholar
  49. [49]
    Linford M.R., Chidsey C.E.D., J. Am. Chem. Soc. 115, 12631–12632 (1993)CrossRefGoogle Scholar
  50. [50]
    Linford M.R., et al., J. Am. Chem. Soc. 1l7, 3145–3155 (1995)CrossRefGoogle Scholar
  51. [51]
    Fenter P., et al., Langmuir 7, 2013–2016 (1991)CrossRefGoogle Scholar
  52. [52]
    Walczak M.M., et al., J. Am. Chem. Soc. 113, 2370–2378 (1991)CrossRefGoogle Scholar
  53. [53]
    Laibinis P.E., et al., J. Am. Chem. Soc. 113, 7152–7167 (1991)CrossRefGoogle Scholar
  54. [54]
    Laibinis P.E., et al., Langmuir 7, 3167–3173 (1991)CrossRefGoogle Scholar
  55. [55]
    Laibinis P.E., Lewis N.S., Chemtracts: Inorg. Chem 4, 49–51 (1992)Google Scholar
  56. [56]
    Chang S.C., Chao I., Tao Y.T., J. Am. Chem. Soc. 116, 6792–6805 (1994)CrossRefGoogle Scholar
  57. [57]
    Li W., Virtanen J.A., Penner R.M., J. Phys. Chem 98, 11751–11755 (1994)CrossRefGoogle Scholar
  58. [58]
    Laibinis P.E., Whitesides G.M., J. Am. Chem. Soc. 114, 9022–9028 (1992)CrossRefGoogle Scholar
  59. [59]
    Laibinis P.E., Whitesides G.M., J. Am. Chem. Soc. 114, 1990–1995 (1992)CrossRefGoogle Scholar
  60. [60]
    Smith E.L., Report 18, (1992)Google Scholar
  61. [61]
    Bigelow W.C., Pickett D.L., Zisman W.A., J. Colloid Interface Sci., 1, 513–538 (1946)CrossRefGoogle Scholar
  62. [62]
    Timmons C.O., Zisman W.A., J. Phys. Chem. 69, 984–990 (1965)CrossRefGoogle Scholar
  63. [63]
    Golden W.G., Snyder CD., Smith B., J. Phys. Chem. 86, 4675–4678 (1982)CrossRefGoogle Scholar
  64. [64]
    Allara D.L., Nuzzo R.G., Langmuir 1, 45–52 (1985)CrossRefGoogle Scholar
  65. [65]
    Schlotter N.E., et al., Chem. Phys. Lett. 132, 93–98 (1986)CrossRefGoogle Scholar
  66. [66]
    Laibinis P.E., et al., Science 245, 845–847 (1989)CrossRefGoogle Scholar
  67. [67]
    Chen S.H., Frank C.W., Langmuir 5, 978–987 (1989)CrossRefGoogle Scholar
  68. [68]
    Chau L.-K., Porter M.D., Chem. Phys. Lett. 167, 198–204 (1990)CrossRefGoogle Scholar
  69. [69]
    Allara D.L., et al., J. Am. Chem. Soc., 113, 1852–1854 (1991)CrossRefGoogle Scholar
  70. [70]
    Tao Y.T., Lee M.T., Chang S.C., J. Am. Chem. Soc. 115, 9547–9555 (1993)CrossRefGoogle Scholar
  71. [71]
    Samant M.G., Brown C.A., Gordon J.G.I., Langmuir 9, 1082–1085 (1993)CrossRefGoogle Scholar
  72. [72]
    Smith E., Porter M.D., J. Phys. Chem. 97, 8032–8038 (1993)CrossRefGoogle Scholar
  73. [73]
    Ahn S.J., MIrzakhojaev D.A., Son D.H., Kim K., Bull. Korean Chem. Soc. 15, 369–374 (1994)Google Scholar
  74. [74]
    On acidic or neutral metal oxides, (e.g. TiO2), the major species bound to the surface is the hydroxamic acid; on basic metal oxides (e.g. Cu(II) oxide) the ligand binds as a hydroxamate. See next referenceGoogle Scholar
  75. [75]
    Folkers J.P., et al., Langmuir 11, 813–824 (1995)CrossRefGoogle Scholar
  76. [76]
    Lee T.R., Pure Appl. Chem. 63, 821–828 (1991)Google Scholar
  77. [77]
    Pemberton J.E., Bryant M.A., Joa S.L., Garvey S.D., Proc. SPIE Int. Soc. Opt. Eng. (1992)Google Scholar
  78. [78]
    Black A.J., et al., J. Am. Chem. Soc. 115, 7924–7925 (1993)CrossRefGoogle Scholar
  79. [79]
    Shimazu K., et al., Bull. Chem. Soc. Jpn 67, 863–865 (1994)CrossRefGoogle Scholar
  80. [80]
    Hines M.A., Todd J.A., Guyot S.P., Langmuir 11, 493–497 (1995)CrossRefGoogle Scholar
  81. [81]
    Lee H., Kepley L.J., Hong H.-G., Mallouk T.E., J. Am. Chem. Soc. 110, 618 (1988)CrossRefGoogle Scholar
  82. [82]
    Putvinski T.M., et al., Langmuir 6, 1567–1571 (1990)CrossRefGoogle Scholar
  83. [83]
    Katz H.E., et al., Science 254, 1485–1487 (1991)CrossRefGoogle Scholar
  84. [84]
    Schilling M.L., et al., Langmuir 9, 2156–2160 (1993)CrossRefGoogle Scholar
  85. [85]
    Byrd H., Pike J.K., Talham D.R., Chem. Mater. 5, 709–715 (1993)CrossRefGoogle Scholar
  86. [86]
    Frey B.L., Hanken D.G., Corn R.M., Langmuir 9, 1815–1820 (1993)CrossRefGoogle Scholar
  87. [87]
    Byrd H., et al., J. Am. Chem. Soc. 116, 295–301 (1994)CrossRefGoogle Scholar
  88. [88]
    Kleinfeld E.R., Ferguson G.S., Science 265, 370–373 (1994)CrossRefGoogle Scholar
  89. [89]
    Feng S., Bein T., Nature 368, 834–836 (1994)CrossRefGoogle Scholar
  90. [90]
    Keller S.W., Kim H.-N., Mallouk T.E., J. Am. Chem. Soc. 116, 8817–8818 (1994)CrossRefGoogle Scholar
  91. [91]
    Maoz R., Sagiv J., Thin Solid Films 1985Google Scholar
  92. [92]
    Tillman N., Ulman A., Penner T.L., Langmuir 5, 101–111 (1989)CrossRefGoogle Scholar
  93. [93]
    Abott N.L., Folkers J.P., Whitesides G.M., Science 257, 1380–1382 (1992)CrossRefGoogle Scholar
  94. [94]
    Krysinski P., Chamberlin R.V., II Majda M., Langmuir 10, 4286–4294 (1994)CrossRefGoogle Scholar
  95. [95]
    For reviews that consider the detailed structure of SAMs see: Dubois L.H., Nuzzo R.G., Annu. Rev. Phys. Chem. 43, 437–463 (1992); Ulman, A., An Introduction to Ultrathin Organic Films, San Diego, CA.: Academic Press, 1991CrossRefGoogle Scholar
  96. [96]
    Fenter P., Eberhardt A., Eisenberger P., Science 266, 1216–1218 (1994)CrossRefGoogle Scholar
  97. [97]
    DiMilla P.A., et al., J. Am. Chem. Soc. 116, 2225–2226 (1994)CrossRefGoogle Scholar
  98. [98]
    Brust M., et al., J. Chem. Soc. Chem. Comm. 801–802 (1994)Google Scholar
  99. [99]
    Sondag-Huethorst J.A.M., Schonenberger C, Fokkink L.G.J., J. Phys. Chem. 98, 6826–6834 (1994)CrossRefGoogle Scholar
  100. [100]
    For a review see: Whitesides G.M., Laibinis P.E., Langmuir 6, 87–96 (1990)CrossRefGoogle Scholar
  101. [101]
    Laibinis P.E., et al., J. Am. Chem. Soc. 112, 570–579 (1990)CrossRefGoogle Scholar
  102. [102]
    Chidsey C.E.D., Loiacono D.N., Langmuir 1990, 682–691 (1990)CrossRefGoogle Scholar
  103. [103]
    Tidswell I.M., Phys. Rev. B 44, 10869–10879 (1991)CrossRefGoogle Scholar
  104. [104]
    Hautman J., Klein M.L., Mater. Res. Soc. Symp. Proc. (1992)Google Scholar
  105. [105]
    Nuzzo R.G., Dubois L.H., Allara D.L., J. Am. Chem. Soc. 112, 558–569 (1990)CrossRefGoogle Scholar
  106. [106]
    Folkers J.P., Laibinis P.E., Whitesides G.M., Langmuir 8, 1330–1341 (1992)CrossRefGoogle Scholar
  107. [107]
    Kim J.H., Cotton T.M., Uphaus R.A., J. Phys. Chem. 92, 5575–5578 (1988)CrossRefGoogle Scholar
  108. [108]
    Bryant M.A., Pemberton J.E., J. Am. Chem. Soc. 113, 8284–8293 (1991)CrossRefGoogle Scholar
  109. [109]
    Bryant M.A., Pemberton J.E., J. Am. Chem. Soc. 113, 3629–3637 (1991)CrossRefGoogle Scholar
  110. [110]
    Bryant M.A., Pemberton J.E., J. Am. Chem. Soc. 113, 8284–8293 (1991)CrossRefGoogle Scholar
  111. [111]
    Matsuda N., et al., Chem. Lett. (1992)Google Scholar
  112. [112]
    Evans S.D., et al., J. Am. Chem. Soc. 113, 4121–4131 (1991)CrossRefGoogle Scholar
  113. [113]
    Thompson W.R., Pemberton J.E., Chem. Mater 5, 241–244 (1993)CrossRefGoogle Scholar
  114. [114]
    Caldwell W.B., et al., Langmuir 10, 4109–4115 (1994)CrossRefGoogle Scholar
  115. [115]
    Tang X., Schneider T., Buttry D.A., Langmuir 10, 2235–2240 (1994)CrossRefGoogle Scholar
  116. [116]
    Strong L., Whitesides G.M., Langmuir 4, 546–548 (1988)CrossRefGoogle Scholar
  117. [117]
    Chidsey C.E.D., et al. Langmuir 6, 1804–1806 (1990)CrossRefGoogle Scholar
  118. [118]
    Camillone N.I., et al. J. Chem. Phys. 98, 3503–3511 (1993)CrossRefGoogle Scholar
  119. [119]
    Camillone N., III, et al., J. Chem. Phys. 101, 11031–11036 (1994)CrossRefGoogle Scholar
  120. [120]
    Fenter P., et al., Mater. Res. Soc. Symp. Proc. 1992Google Scholar
  121. [121]
    Arndt T., Schupp H., Schrepp W., Thin Solid Films (1989)Google Scholar
  122. [122]
    Sun L., Kepley L.J., Crooks R.M., Langmuir 8, 2101–2103 (1992)CrossRefGoogle Scholar
  123. [123]
    Chidsey C.E.D., Loiacono D.N., Langmuir 6, 709–712 (1990)CrossRefGoogle Scholar
  124. [124]
    Uosaki K., Sato Y., Kita H., Langmuir 7, 1510–1514 (1991)CrossRefGoogle Scholar
  125. [125]
    De L.H.C., Donohue J.J., Buttry D.A., Langmuir 7, 2196–2202 (1991)CrossRefGoogle Scholar
  126. [126]
    Hickman J.J., et al., J. Am. Chem. Soc. 113, 1128–1132 (1991)CrossRefGoogle Scholar
  127. [127]
    Chidsey C.E.D., et al., Chemtracts: Inorg. Chem. 3, 27–30 (1991)Google Scholar
  128. [128]
    Sabatani E., et al., Langmuir 9, 2974–2981 (1993)CrossRefGoogle Scholar
  129. [129]
    Sun L., Crooks R.M., Langmuir 9, 1951–1954 (1993)CrossRefGoogle Scholar
  130. [130]
    Creager S.E., Hockett L.A., Rowe G.K., Langmuir 8, 854–861 (1992)CrossRefGoogle Scholar
  131. [131]
    Kim Y.T., Bard A.J., Langmuir 8, 1096–1102 (1992)CrossRefGoogle Scholar
  132. [132]
    Gregory B.W., Dluhy R.A., Bottomley L.A., Proc. Spie Int. Soc. Opt. Eng. 1993Google Scholar
  133. [133]
    Delamarche E., et al., Langmuir 10, 2869–2871 (1994)CrossRefGoogle Scholar
  134. [134]
    Schoenenberger C, et al., Langmuir 10, 611–614 (1994)CrossRefGoogle Scholar
  135. [135]
    Stranick S.J., et al., J. Vac. Sci. TechnoL, B 12, 20004–20007 (1994)CrossRefGoogle Scholar
  136. [136]
    Stranick S.J., et al., J. Phys. Chem. 98, 7636–7646 (1994)CrossRefGoogle Scholar
  137. [137]
    Delamarche E., et al., Langmuir 10, 4103–4108 (1994)CrossRefGoogle Scholar
  138. [138]
    Bucher J.P., Santesson L., Kern K., Langmuir 10, 979–983 (1994)CrossRefGoogle Scholar
  139. [139]
    Gregory B.W., Dluhy R.A., Bottomley L.A., J. Phys. Chem. 98, 1010–1021 (1994)CrossRefGoogle Scholar
  140. [140]
    Sondag H.J.A.M., Schonenberger C., Fokkink L.G.J., J. Phys. Chem. 98, 6826–6834 (1994)CrossRefGoogle Scholar
  141. [141]
    Wolf H., et al., J. Phys. Chem. 99, 7102–7107 (1995)CrossRefGoogle Scholar
  142. [142](a)
    oirier G.E., Tarlov M.J., Langmuir 10, 2853–2856 (1994) (b) Poirier, G.E., Tar lov, M.J., J. Phys. Chem. 99, 10966-10970 (1995)CrossRefGoogle Scholar
  143. [143]
    McCarley R.L., Dunaway D.J., Willicut R.J., Langmuir 9, 2775–2777 (1993)CrossRefGoogle Scholar
  144. [144]
    Pokier G.E., Tarlov M.J., Rushmeier H.E., Langmuir 10, 3383–3386 (1994)CrossRefGoogle Scholar
  145. [145]
    Dubois L.H., Nuzzo R.G., Annu. Rev. Phys. Chem. 43, 437–463 (1992)CrossRefGoogle Scholar
  146. [146]
    Kumar A., Biebuyck H.A., Whitesides G.M., Langmuir 10, 1498–1511 (1994)CrossRefGoogle Scholar
  147. [147]
    Zhao M., Wilbur J.L., and Whitesides G.M., (unpublished results)Google Scholar
  148. [148]
    Kumar A., Whitesides G.M., Appl. Phys. Lett. 63, 2002–2004 (1993)CrossRefGoogle Scholar
  149. [149]
    Wilbur J.L., et al., Adv. Mat. 7-8, 600–604 (1994)CrossRefGoogle Scholar
  150. [150]
    Abbott N.L., Rolison D.R., Whitesides G.M., Langmuir 10, 2672–2682 (1994)CrossRefGoogle Scholar
  151. [151]
    Lopez G.P., et al., J. Am. Chem. Soc. 115, 10774–10781 (1993)CrossRefGoogle Scholar
  152. [152]
    Kleinfeld D., Kahler K.H., Hockberger P.E., J. Neurosci. 8, 4098–4120 (1988)Google Scholar
  153. [153]
    Rozsnyai L.F., Wrighton M.S., J. Am. Chem. Soc. 116, 5993–5994 (1994)CrossRefGoogle Scholar
  154. [154]
    Wollman E.W., et al., J. Am. Chem. Soc. 116, 4395–4404 (1994)CrossRefGoogle Scholar
  155. [155]
    Calvert J.M., et al., Thin Solid Films 211, 359–363 (1992)CrossRefGoogle Scholar
  156. [156]
    Tarlov M.J., Burgess D.R.F.J., Gillen G., J. Am. Chem. Soc. 115, 5305–5306 (1993)CrossRefGoogle Scholar
  157. [157]
    Dressick W.J., Calvert J.M., Jpn. J. Appl. Phys., Part 1, 5829–5839 (1993)Google Scholar
  158. [158]
    Huang J., Dahlgren D.A., Hemminger J.C., Langmuir 10, 626–628 (1994)CrossRefGoogle Scholar
  159. [159]
    Gillen G., et al., J. Appl. Phys. Lett. 65, 534–536 (1994)CrossRefGoogle Scholar
  160. [160]
    Sondag-Huethorst J.A.M., van Helleputte H.R.J., Fokkink L.G., J. Appl. Phys. Lett. 64, 285–287 (1994)CrossRefGoogle Scholar
  161. [161]
    Lercel M.J., et al., Appl. Phys. Lett. 65, 974–976 (1994)CrossRefGoogle Scholar
  162. [162]
    Marrian C.R.K., et al., Appl. Phys. Lett. 64, 390–392 (1994)CrossRefGoogle Scholar
  163. [163]
    Rieke P.C., et al. Langmuir 10, 619–622 (1994)CrossRefGoogle Scholar
  164. [164]
    Mino N., et al., Thin Solid Films 243, 374–377 (1994)CrossRefGoogle Scholar
  165. [165]
    Perkins F.K., et al., J. Vac. Sci. TechnoL, B 12, 3725–3730 (1994)CrossRefGoogle Scholar
  166. [166]
    Lercel M.J., et al., J. Vac. Sci. TechnoL B 12, 3663–3667 (1994)CrossRefGoogle Scholar
  167. [167]
    Sondag-Huethorst J.A.M., van Helleputte H.R.J., Fokkink L.G., J. Appl. Phys. Lett. 64, 285–287 (1994)CrossRefGoogle Scholar
  168. [168]
    Lercel M.J., et al., Microelec. Eng. 27, 43 (1995)CrossRefGoogle Scholar
  169. [169]
    Kim Y.T., Bard A.J., Langmuir 8, 1096–1102 (1992)CrossRefGoogle Scholar
  170. [170]
    Ross C.B., Sun L.i., Crooks R.M., Langmuir 9, 632–636 (1993)CrossRefGoogle Scholar
  171. [171]
    Schoer J.K., et al., Langmuir 10, 615–618 (1994)CrossRefGoogle Scholar
  172. [172]
    López G.P., Biebuyck A., Whitesides G.M., Langmuir 9, 1513–1516 (1993)CrossRefGoogle Scholar
  173. [173]
    López G.P., et al., Science 260, 647–649 (1993)CrossRefGoogle Scholar
  174. [174]
    Wilbur J.L., Langmuir 11, 825–831 (1995)CrossRefGoogle Scholar
  175. [175]
    Wilbur J.L., et al., Adv. Mat., (in press)Google Scholar
  176. [176]
    Chaudhury M.K., Whitesides G.M., Langmuir 7, 1013–1025 (1991)CrossRefGoogle Scholar
  177. [177]
    Bain C.D., Whitesides G.M., Langmuir 5, 1370–1378 (1989)CrossRefGoogle Scholar
  178. [178]
    Hare E.F., Zisman W.A., J. Phys. Chem. 59, 335–340 (1995)CrossRefGoogle Scholar
  179. [179]
    de Gennes P.-G., Rev. Mod. Phys. 57, 827–863 (1985)CrossRefGoogle Scholar
  180. [180]
    Holmes-Farley S.R., et al., Langmuir 1, 725–740 (1995)CrossRefGoogle Scholar
  181. [181]
    Biebuyck H.A., Whitesides G.M., Langmuir 10, 4581–4587 (1994)CrossRefGoogle Scholar
  182. [182]
    Xia Y., Whitesides G.M., Adv. Mater. 7, 471–473 (1995)CrossRefGoogle Scholar
  183. [183]
    Xia Y., Whitesides G.M., J. Am. Chem. Soc. 1l7, 3274–3275 (1995)CrossRefGoogle Scholar
  184. [184]
    Xia Y., et al., Langmuir, (in press)Google Scholar
  185. [185]
    Xia Y., et al., (unpublished results)Google Scholar
  186. [186]
    Lercel M.J., et al., J. Vac. Sci. Technol. B 11, 2823–2828 (1993)CrossRefGoogle Scholar
  187. [187]
    Lercel M.J., et al., J. Vac. Sci. Technol.B, (in press)Google Scholar
  188. [188]
    Laibinis P.E., et al., Science 254, 981–983 (1991)CrossRefGoogle Scholar
  189. [189]
    Huang J., Hemminger J.C., J. Am. Chem. Soc. 115, 3342–3343 (1993)CrossRefGoogle Scholar
  190. [190]
    Sheen C.W., et al., J. Am. Chem. Soc. 114, 1514–1515 (1992)CrossRefGoogle Scholar
  191. [191]
    Stratmann M., et al., Bull. Electrochem. 8, 52–56 (1992)Google Scholar
  192. [192]
    Kumar A., et al., J. Am. Chem. Soc. 114, 9188–9189 (1992)CrossRefGoogle Scholar
  193. [193]
    We used an aqueous ferricyanide etch (0.001M K4Fe(CN)6,0.01M K3Fe(CN)6, 0.1M K2S2O3, 1M KOH). Xia Y., Zhao M., and White sides G.M.Google Scholar
  194. [194]
    Kumar A., Whitesides G.M., Science 263, 60–62 (1994)CrossRefGoogle Scholar
  195. [195]
    Gorman C.B., Biebuyck H.A., Whitesides G.M., Chem. Mat. 7, 526–529 (1995)CrossRefGoogle Scholar
  196. [196]
    Abbott N.L., et al., NATO ASI Ser., Ser. E (1993)Google Scholar
  197. [197]
    Biebuyck H. A., Whitesides G.M., Langmuir 10, 2790–2793 (1994)CrossRefGoogle Scholar
  198. [198]
    Kim E., Kumar A., Whitesides G.M., J. Electrochem. Soc. 142, 628–633 (1995)CrossRefGoogle Scholar
  199. [199]
    Gorman C.B., Biebuyck H.A., Whitesides G.M., Chem. Mat. 7, 252–254 (1995)CrossRefGoogle Scholar
  200. [200]
    Whidden T.K., et al. Nanotechnology, (in press)Google Scholar
  201. [201]
    Jackman R.J., Wilbur J.L., Whitesides G.M., Science, (in press)Google Scholar
  202. [202]
    Wilbur J.L., et al., Nanotechnology, (in press)Google Scholar
  203. [203]
    Potochnik S.J., et al, “Advanced Metallization for Devices and Circuits: Science, Technology and Manufacturability,” in Mater. Res. Soc. Symp. Proc.:337, 1994, pp.429–434CrossRefGoogle Scholar
  204. [204]
    Potochnik S.J., et al. Langmuir 11, 1841–1845 (1995)CrossRefGoogle Scholar
  205. [205]
    Jeon N.L., et al., Langmuir, (in press)Google Scholar
  206. [206]
    Kim E., et al., Adv. Mat., (in press)Google Scholar
  207. [207]
    The rich field of colloids and nanocrystals is discussed in more detail in Chapter 6.Google Scholar
  208. [208]
    Reiss H.J., Chem. Phys. 19, 482–487 (1951)Google Scholar
  209. [209]
    Schmid G., Chem. Rev. 92, 1709–1727 (1992)CrossRefGoogle Scholar
  210. [210]
    Steigerwald M.L., et al., J. Am. Chem. Soc. 110, 3046–3050 (1988)CrossRefGoogle Scholar
  211. [211]
    Wang Y., Herron N., J. Phys. Chem. 95, 525–532 (1991)CrossRefGoogle Scholar
  212. [212]
    Fenske D., Krautscheid H., Angew. Chem. Int. Ed. Engl. 29, 1452–1454 (1990)CrossRefGoogle Scholar
  213. [213]
    Krautscheid H., et al., Angew. Chem. Int. Ed. Engl. 32, 1303–1305 (1993)CrossRefGoogle Scholar
  214. [214]
    Herron N., et al., Science 259, 1426–1428 (1993)CrossRefGoogle Scholar
  215. [215]
    Murray C.B., Norris D.J., Bawendi M.G., J. Am. Chem. Soc. 115, 8706–8715 (1993)CrossRefGoogle Scholar
  216. [216]
    Colvin V.L., Goldstein A.N., Alivisatos A.P., J. Am. Chem. Soc. 114, 5221–5230 (1992)CrossRefGoogle Scholar
  217. [217]
    Maeda Y., Yamamoto H., Kitano H., J. Phys. Chem., 99, 4837–4841 (1995)CrossRefGoogle Scholar
  218. [218]
    Whitesides G.M., Laibinis P.E., Langmuir 6, 87–96 (1990)CrossRefGoogle Scholar
  219. [219]
    Lee T.R., et al., Langmuir 10, 741–749 (1994)CrossRefGoogle Scholar
  220. [220]
    Abbott N.L., Gorman C.B., Whitesides G.M., Langmuir 11, 16–18 (1995)CrossRefGoogle Scholar
  221. [221]
    Taniguchi I., et al., Microchem. J. 49, 340–354 (1994)CrossRefGoogle Scholar
  222. [222]
    Willicut R.J., McCarley R.L., Langmuir 11, 296–301 (1995)CrossRefGoogle Scholar
  223. [223]
    Ferguson G.S., et al., Science 253, 776–778 (1991)CrossRefGoogle Scholar
  224. [224]
    Chaudhury M.K., Whitesides G.M., Science 255, 1230–1232 (1992)CrossRefGoogle Scholar
  225. [225]
    Prime K.L., Whitesides G.M., Science 252, 1164–1167 (1991)CrossRefGoogle Scholar
  226. [226]
    Mrksich M., Whitesides G.M., Trends in Biotechnology, (in press)Google Scholar
  227. [227]
    Pritchard D.J., Morgan H., Cooper J.M., Angew. Chem. Int. Ed. Engl. 34, 91–93 (1995)CrossRefGoogle Scholar
  228. [228]
    López G.L.A., et al., J. Am. Chem. Soc. 115, 5877–5878 (1993)CrossRefGoogle Scholar
  229. [229]
    Amador S.M., et al., Langmuir 9, 812–817 (1993)CrossRefGoogle Scholar
  230. [230]
    Singhv R., et al., Science 264, 696–698 (1994)CrossRefGoogle Scholar
  231. [231]
    Sukenik C.N., et al., Biomed. Mater. Res. 24, 1307–1323 (1990)CrossRefGoogle Scholar
  232. [232]
    Kirk W.P., Reed M.A., Nanostructures and Mesoscopic Systems, Academic Press, 1992Google Scholar
  233. [233]
    Tour J.M., Adv. Mat. 6, 190–198 (1994)CrossRefGoogle Scholar
  234. [234]
    Pearson D.L., et al., Polym. Prepr. 35, 202–203 (1994)Google Scholar
  235. [235]
    Sayre C.N., Collard D.M., Langmuir 11, 302–306 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • James L. Wilbur
    • 1
  • George M. Whitesides
    • 1
  1. 1.Department of ChemistryHarvard UniversityCambridgeUSA

Personalised recommendations