Skip to main content

Part of the book series: Graduate Texts in Contemporary Physics ((GTCP))

  • 1571 Accesses

Abstract

Although the methods of conformal field theory have given us a wealth of possible string vacuums and a framework in which to begin phenomenology, there are still severe deficiencies in this formulation. First, conformal field theory is necessarily a perturbative formulation. It is based on the first quantized string model propagating on various compactified manifolds. The problem is that the first quantized functional formulation [Eq. (1.2.1)] is based on the sum over conformally inequivalent Riemann manifolds of genus g, which yields a perturbative series of Feynman diagrams. The success of this formulation is that it yields a finite formulation of gravity interacting with quarks and leptons. However, its drawback is that millions of conformal field theories can be constructed using the methods presented in the previous chapters, and there is absolutely no concrete way in which to choose which, if any, of these millions of vacuums corresponds to our real world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kaku and K. Kikkawa, Phys. Rev. D10, 1110, 1823 (1974).

    ADS  Google Scholar 

  2. E. Witten, Nucl. Phys. B268, 253 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Giddings and S. Wolpert, Comm. Math. Phys. 109, 177 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J. Harer, Invent. Math. 72, 221 (1982); Ann. of Math. 121, 215 (1985); J. Harer and D. Zagier, Invent. Math. 85, 457 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  5. R. C. Penner, in Mathematical Aspects of String Theory, S. T. Yau, ed., World Scientific, Singapore (1986); Comm. Math. Phys. 113, 299 (1987). For reviews, see Refs. 6-10.

    Google Scholar 

  6. M. Kaku, “String Field Theory,” Int. J. Mod. Phys. A2, 1 (1987).

    MathSciNet  ADS  Google Scholar 

  7. W. Siegel, Introduction to String Field Theory, World Scientific, Singapore (1988).

    Book  Google Scholar 

  8. T. Banks, SLAC-PUB 3996 (1986).

    Google Scholar 

  9. P. West, CERN/TH-4660 (1986).

    Google Scholar 

  10. C. Thorn, Phys. Rep. 175, 1 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Mandelstam, Nucl. Phys. B64, 205 (1973); B69, 77 (1974).

    Article  ADS  Google Scholar 

  12. E. Cremmer and J. L. Gervais, Nucl. Phys. B76, 209 (1974); Nucl. Phys. B90, 410(1975).

    Article  ADS  Google Scholar 

  13. W. Siegel, Phys. Lett. 142B, 276 (1984); 151B, 391, 396 (1985).

    ADS  Google Scholar 

  14. T. Banks and M. Peskin, Nucl. Phys. B264, 513 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  15. W. Siegel and B. Zwiebach, Nucl. Phys. B263, 105 (1985).

    MathSciNet  ADS  Google Scholar 

  16. H. Hata, K. Itoh, T. Kugo, H. Kunitomo, and K. Ogawa, Phys. Lett. 175B, 138 (1986).

    MathSciNet  ADS  Google Scholar 

  17. M. D. Freeman and D. I. Olive, Phys. Lett. 175B, 151 (1986).

    MathSciNet  ADS  Google Scholar 

  18. M. Peskin and C. B. Thorn, Nucl. Phys. B269, 509 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Bochicchio Phys. Lett. 193B, 31 (1987).

    MathSciNet  ADS  Google Scholar 

  20. O. Alvarez, Nucl. Phys. B216, 125 (1983).

    Article  ADS  Google Scholar 

  21. S. Giddings, Nucl. Phys. B278, 242 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Giddings and E. Martinec, Nucl. Phys. B278, 91 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Samuel, Phys. Lett. 181B, 249 (1986).

    MathSciNet  ADS  Google Scholar 

  24. D. Gross and A. Jevicki, Nucl. Phys. B282, 1 (1987).

    MathSciNet  ADS  Google Scholar 

  25. E. Cremmer, C. B. Thorn, and A. Schwimmer, Phys. Lett. 179B, 57 (1986).

    MathSciNet  ADS  Google Scholar 

  26. D. Friedan, E. Martinec, and S. Shenker, Nucl. Phys. B271, 93 (1986).

    MathSciNet  ADS  Google Scholar 

  27. E. Witten, Nucl. Phys. B276, 291 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  28. C. Wendt, Nucl. Phys. B314, 209 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  29. C. R. Preitschoff, C. B. Thorn, and S. A. Yost, UFIFT-HEP-89-19; I. Ya. Aref’ eva, P. B. Medvedev, and A. P. Zubarev, SMI-10-1989.

    Google Scholar 

  30. O. Lechtenfeld and S. Samuel, Nucl Phys. B310, 254 (1988).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaku, M. (2000). String Field Theory. In: Strings, Conformal Fields, and M-Theory. Graduate Texts in Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0503-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0503-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6792-8

  • Online ISBN: 978-1-4612-0503-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics