Invasive Somatosensory-Evoked Potential Monitoring

  • Dudley S. Dinner
  • M. D. Hans Luders
  • Ronald P. Lesser
  • Harold H. MorrisIII
  • Gene Barnett
  • George Klem
Part of the Neurotrauma book series (NT)


Somatosensory-evoked potentials (SEPs) have been used for monitoring spinal cord integrity during surgery for more than a decade. Early detection of significant changes in the SEPs may indicate early and reversible spinal cord dysfunction, thus permitting appropriate measures to be taken to prevent irreversible spinal cord damage. Intraoperative spinal cord damage usually results form ischemia, mechanical effects of compression or distraction, or both.


Spinal Cord Spinal Cord Injury Cortical Potential Median Nerve Stimulation Interspinous Ligament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, A., Starr, A., Nudleman, K.: Assessment of sensory function in the operating room utilizing cerebral evoked potentials: A study of fifty-six surgically anesthetized patients. Clin, Neurosurg., 28::457–481, 1981.Google Scholar
  2. 2.
    Bennett, M.H.: Effects of compression and ischemia on spinal cord evoked potentials. Exp. Neurol., 80:508–519, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Brodkey, J.S., Richard, D.E., Blasingame, J.P., Nulsen, F.E.: Reversible spinal cord trauma in cats: additive effects of direct pressure and ischemia. J. Neurosurg., 37:591–593, 1972.PubMedCrossRefGoogle Scholar
  4. 4.
    Brown, J.C. Axelgaard, J., Rowe, D.E.: Monitoring of the human spinal cord. (Abstract) Orthop. Trans., 3:123, 1979.Google Scholar
  5. 5.
    Coles, J.G., Wilson, G.J., Sima, A.F., Klement, P.J., Tait, G.A.: Intraoperative detection of spinal cord ischemia using somatosensory cortical evoked potentials during thoracic aortic occlusion. Ann. Thorac. Surg., 34:299–306, 1982.PubMedCrossRefGoogle Scholar
  6. 6.
    Croft, T.J., Brodkey, J.S., Nulsen, F.E.: Reversible spinal cord trauma: a model for electrical monitoring of spinal cord function. J. Neurosurg., 36:299–306, 1972.CrossRefGoogle Scholar
  7. 7.
    Cusick, J.F., Myklebust, J.F., Larson, S.J., Sances, A., Jr.: Spinal cord potentials in the primate: neural substrate. J. Neurosurg., 49:551–557, 1978.PubMedCrossRefGoogle Scholar
  8. 8.
    D’Angelo, C.M., Van Gilder, J.C, Taur, A.: Evoked cortical potentials in experimental spinal cord trauma. J. Neurosurg., 38:332–336, 1973.PubMedCrossRefGoogle Scholar
  9. 9.
    Deecke, L., Tator, CH.: Neurophysiological assessment of afferent and efferent conduction in the injured spinal cord of monkeys. J. Neurosurg., 39:65–74, 1973.PubMedCrossRefGoogle Scholar
  10. 10.
    Dinner, D.S., Luders, H., Lesser, R.P., Morris, H.H., Barnett, G., Klem, G.: Spinal intraoperative somatosensory-evoked potential monitoring. J. Neurosurg., 65:807–814, 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    Dolan, E.J., Transfeldt, E.E., Tator, C.H., Simmons, E.H., Hughes, K.F.: The effect of spinal distraction on regional spinal cord blood flow in cats. J. Neurosurg., 53:756–764, 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Engler, G.L., Spieholz, N.I., Bernhard, W.N., Danziger, F., Merkin, H., Wolff, T.: Somatosensory-evoked potentials during Harrington instrumentation for scoliosis. J. Bone. Joint. Surg., [Am] 60:528–532, 1978.Google Scholar
  13. 13.
    Giblin, D.R.: Somatosensory-evoked potentials in healthy subjects and in patients with lesions of the nervous system. Ann. NY Acad. Sci., 112:93–142, 1964.PubMedCrossRefGoogle Scholar
  14. 14.
    Griffiths, I.R., Trench, J.G., Crawford, R.A.: Spinal cord blood flow and conduction during experimental cord compression in mormotensive and hypotensive dogs. J. Neurosurg., 50:353–360, 1979.PubMedCrossRefGoogle Scholar
  15. 15.
    Hahn, J., Lesser, R.P., Klem, S., Luders, H.: Simple technique for monitoring intraoperative spinal cord function. J. Neurosurg., 9:692–695, 1981.CrossRefGoogle Scholar
  16. 16.
    Halliday, A.M., Wakefield, G.S.: Cerebral evoked responses in patients with dissociated sensory loss. (Abstract) Electroencephalogr. Clin. Neurophysiol., 14:785–790, 1962.CrossRefGoogle Scholar
  17. 17.
    Jones, S.J., Edgar, M.A., Ransford, A.O., Thomas, N.P.: A system for the electrophysiological monitoring of the spinal cord during operations for scoliosis. J. Bone Joint Surg., [Br] 65:134–139, 1983.Google Scholar
  18. 18.
    Klem, G., Andrish, J., Gurd, A., Weiker, G., Luders, H.: Spinal cord potentials recorded form ligamentum interspinalis. Electroencephalogr. Clin. Neurophysiol., 50:221, 1980.CrossRefGoogle Scholar
  19. 19.
    Kobrine, A.I., Evans, D.E., Rizzoli, H.V.: Correlation of spinal cord blood flow, sensory evoked response, and spinal cord function in subacute experimental spinal cord compression. In: Cervos-Navarro, J., Betz, E., Ebhardt, G., Ferszt, R., Wullenweber, R. eds. New York: Raven Press, 389–394, 1978. (Advances in Neurology; vol. 20).Google Scholar
  20. 20.
    La Mont, R.L., Wasson, S.L., Green, M.A.: Spinal cord monitoring during spinal surgery using somatosensory spinal evoked potentials. J. Pediatr. Orthop., 3:31–36, 1983.CrossRefGoogle Scholar
  21. 21.
    Larson, S.J., Sances, A., Jr., Christenson, P.C.: Evoked somatosensory potentials in man. Arch. Neurol., 15:88–93, 1966.PubMedCrossRefGoogle Scholar
  22. 22.
    Larson, S.J., Walsh, P.R., Sances, A., Jr., Cusick, J.F., Hemmy, D.C., Mahler, H.: Evoked potentials in experimental myelopathy. Spine 5:299–302, 1980.PubMedCrossRefGoogle Scholar
  23. 23.
    Luders, H., Gurd, A., Hahn, J., Andrish, H., Weiker, G., Klem, G.: A new technique for intraoperative monitoring of spinal cord function. Spine 7:110–115, 1982.CrossRefGoogle Scholar
  24. 24.
    Luders, H., Andrish, J., Gurd, A., Weiker, G., Klem, G.: Origin of far-field subcortical potentials evoked by stimulation of the posterior tibial nerve. Electroenceph. Clin. Neurophysiol., 52:336–344, 1981.CrossRefGoogle Scholar
  25. 25.
    Maccabee, P., Levin, D.B., Kahanovitz, N., Pinkhosov, E.: Monitoring of spinal and subcortical somatosensory-evoked potentials during Harrington rod instrumentation. Orthop. Trans., 6:19, 1982.Google Scholar
  26. 26.
    MacEwen, G.D., Bunnell, W.P., Sriram, K.: Acute neurological complications in the treatment of scoliosis. J. Bone Joint Surg., [Am] 57:404–408, 1975.Google Scholar
  27. 27.
    Macon, J.B., Pletti, C.E., Sweet, W.H., Ojemann, R.G., Zervas, N.T.: Conducted somatosensory-evoked potentials during spinal surgery. Part 2: Clinical applications. J. Neurosurg., 57:354–359, 1982.PubMedCrossRefGoogle Scholar
  28. 28.
    McCallum, J.E., Bennett, M.H.: Electrophysiologic monitoring of spinal cord function during intraspinal surgery. Surg. Forum. 26:469–471, 1975.PubMedGoogle Scholar
  29. 29.
    McNeal, D., Passoff, T., Swank, S., Satomi, K.: Spinal cord monitoring using epidural electrodes for stimulation and recording. Orthop. Trans., 6:19, 1982.Google Scholar
  30. 30.
    Nash, C.L., Lorig, R.A., Schatzinger, L.A., Brown, R.H.: Spinal cord monitoring during operative treatment of the spine. Clin. Orthop., 126:100–105, 1977.PubMedGoogle Scholar
  31. 31.
    Nordwall, A., Axelgaard, J., Harada, Y., Valencia, P., McNeal,, D.R., Brown, J.C.: Spinal cord monitoring using evoked potentials recorded from feline vertebral bone. Spine 4:486–494, 1979.PubMedCrossRefGoogle Scholar
  32. 32.
    Nuwer, M.R., Dawson, E.C.: Intraoperative evoked potentials monitoring of the spinal cord: a restricted filter, scalp method during Harrington instrumentation for scoliosis. Clin. Orthop. 183:42–50, 1984.PubMedGoogle Scholar
  33. 33.
    Schramm, J., Hashizume, K., Fukushima, T. Takahashi, H.: Experimental spinal cord injury produced by slow, graded compression: alterations of cortical and spinal evoked potentials. J. Neurosurg., 50:48–57, 1979.PubMedCrossRefGoogle Scholar
  34. 34.
    Spielholz, N.I., Benjamin, M.V., Engler, G.L., Ransohoff, J.: Somatosensory-evoked potentials during decompression and stabilization of the spine. Methods and findings. Spine 4:500–505, 1979.PubMedCrossRefGoogle Scholar
  35. 35.
    Tamaki, T., Noguchi, T., Takano, H., Tsuji, H., Nakagawa, T., Imai, K., and Inoue, S.: Spinal cord monitoring as a clinical utilization of the spinal evoked potentials. Clin. Orthop., 184:58–64, 1984.PubMedGoogle Scholar
  36. 36.
    Tamaki, T., Tsuji, H., Inoue, S., Kobayashi, H.: The prevention of iatrogenic spinal cord injury utilizing the evoked spinal cord potential. Int. Orthop., 4:313–317, 1981.PubMedGoogle Scholar
  37. 37.
    Tsuji, S., Luders, H., Lesser, R.P., Dinner, D.S., and Klem, G.: Subcortical and cortical somatosensory potentials evoked by posterior tibial nerve stimulation: Normative values. Electroenceph. and Clin. Neurophysiol., 59:214–228, 1984.CrossRefGoogle Scholar
  38. 38.
    Tsuyama, N., Tsuzuki, N., Kurokawa, T., Imai, T.: Clinical application of spinal cord action potential movement. Int. Orthop., 2:39–46, 1978.CrossRefGoogle Scholar
  39. 39.
    Wilber, R.G., Thompson, G.H., Shaffer, J.W., Brown, R.H., Nash, C.L.: Postoperative neurological deficits in segmental spinal instrumentation: a study using spinal cord monitoring. J. Bone Joint Surg., [Am] 66:1178–1187, 1984.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Dudley S. Dinner
    • 1
  • M. D. Hans Luders
    • 1
  • Ronald P. Lesser
    • 1
  • Harold H. MorrisIII
    • 1
  • Gene Barnett
    • 1
  • George Klem
    • 1
  1. 1.The Cleveland Clinic Foundation Section of Epilepsy and Clinical NeurophysiologyClevelandUSA

Personalised recommendations