Luminescence in Biosensor Design

  • Pierre R. Coulet
  • Loïc J. Blum
Part of the Contemporary Instrumentation and Analysis book series (CIA)


The production of light during some biochemical reactions (bioluminescence) has been recognized as a powerful tool for biochemical and clinical analysis. The light emission can be measured with great sensitivity, and consequently analysis can be performed at very low detection levels.


Bile Acid Immobilize Enzyme Firefly Luciferase Creatine Kinase Activity Primary Bile Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McElroy, W. D. (1947) The energy source for bioluminescence in an isolated system.Proc. Nat. Acad. Sci. USA33, 342–345.PubMedCrossRefGoogle Scholar
  2. 2.
    DeLuca, M. (1976) Firefly luciferase, inAdvances in Enzymologyvol. 44 (Meister, A., ed.), Wiley, New York, pp. 37–68.Google Scholar
  3. 3.
    DeLuca, M. and McElroy, W. D. (1978) Purification and properties of firefly luciferase, inMethods in Enzymologyvol. 57 (DeLuca, M. A., ed.), Academic, New York, pp. 3–15.Google Scholar
  4. 4.
    McElroy, W. D. and DeLuca, M. (1985) Firefly luminescence, inChemi-and Bioluminescence(Burr, J. G., ed.), Marcel Dekker, New York, pp. 387–399.Google Scholar
  5. 5.
    Denburg, J. L., Lee, R. T., and McElroy, W. D. (1969) Substrate-binding properties of firefly luciferase. I. Luciferin-binding site.Arch. Biochem. Biophys.134, 381–394.PubMedCrossRefGoogle Scholar
  6. 6.
    Lemasters, J. L. and Hackenbrook, C. R. (1977) Kinetics of product inhibition during firefly luciferase luminescence.Biochemistry16,445–447.PubMedCrossRefGoogle Scholar
  7. 7.
    Green, A. A. and McElroy, W. D. (1956) Crystalline firefly luciferase.Biochim. Biophys. Acta20, 170–176.PubMedCrossRefGoogle Scholar
  8. 8.
    White, E. H., McCapra, F., Field, G. F., and McElroy, W. D. (1961) The structure and synthesis of firefly luciferin.J. Am. Chem. Soc.83, 2402,2403.Google Scholar
  9. 9.
    Leach, R. L. and Webster, J. J. (1986) Commercially available firefly luciferase reagents, inMethods in Enzymologyvol. 133 (DeLuca, M. A. and McElroy, W. D., eds.), Academic, New York, pp. 51–70.Google Scholar
  10. 10.
    Hastings, J. W., Baldwin, O. T., and Nicoli, M. Z. (1978) Bacterial luciferase: Assay, purification, and properties, inMethods in Enzymologyvol. 57, (DeLuca, M. A., ed.), Academic, New York, pp. 135–152.Google Scholar
  11. 11.
    Nealson, K. H. (1978) Isolation, identification, and manipulation of luminous bacteria, inMethods in Enzymologyvol. 57 (DeLuca, M. A., ed.), Academic, New York, pp. 153–166.Google Scholar
  12. 12.
    Baumann, P., Fumiss, A. L., and Lee, J. V. (1984) Genus I.Vibrio. in Bergey’ s Manual of Systematic Bacteriologyvol. 1 (Krieg, N. R., ed.), William & Willkins, Baltimore, pp. 518–538.Google Scholar
  13. 13.
    Baumann, P. and Baumann, L. (1984) Genus H.Photobacteriwn. in Bergey’ s Manual of Systematic Bacteriologyvol. 1 (Krieg, N. R., ed.), Williams & Willkins, Baltimore, pp. 539–545.Google Scholar
  14. 14.
    Puget, K. and Michelson, A. M. (1972) Studies in bioluminescence. VII. Bacterial NADH: Flavin mononucleotide oxidoreductase.Biochimie54, 1197–1204.PubMedCrossRefGoogle Scholar
  15. 15.
    Duane, W. and Hastings, J. W. (1975) Flavin mononucleotide reductase in luminous bacteria.Mol. Cell. Biochem. 6, 53–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Gerlo, E. and Chartier, J. (1975) Identification of NADH-specific and NADPH-specific FMN reductases inBeneckea harveyi. Eur. J. Biochem.57,461–467.CrossRefGoogle Scholar
  17. 17.
    Erlanger, B. F., Isambert, M. F., and Michelson, A.M. (1970) Insoluble bacterial luciferases: A new approach to some problems in bioluminescence.Biochem. Biophys. Res. Commun.40,70–76.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee, Y., Jablonski I., and DeLuca M. (1977) Immobilization of firefly luciferase on glass rods. Properties of immobilized enzyme.Anal. Biochem.80, 496–501.PubMedCrossRefGoogle Scholar
  19. 19.
    .Wienhausen, G. K., Kricka, L. J., Hinkley, J. E., and DeLuca, M. (1982) Properties of bacterial luciferase/NADH:FMN oxidoreductase and firefly luciferase immobilized onto Sepharose.Applied Biochem. Biotechnol.7,463–473.CrossRefGoogle Scholar
  20. 20.
    Kricka, L. J., Wienhausen, G. K., Hinkley, J. E., and DeLuca, M. (1983) Automated bioluminescent assays for NADH, glucose-6-phosphate, primary bile acids and ATP.Anal. Biochem.129, 392–397.PubMedCrossRefGoogle Scholar
  21. 21.
    Kricka, L. J. and DeLuca, M. (1982) Effect of solvents on the catalytic activity of firefly luciferase.Arch. Biochem. Biophys.217, 674–681.PubMedCrossRefGoogle Scholar
  22. 22.
    Brovko, L. Yu., Ugarova, N. N., Vasileva, T. E., Dombrovski, V. A., and Berezin, I.V. (1978) Use of immobilized firefly luciferase for quantitative determination of ATP and enzymes that synthesize and destroy ATP.Biochemistry USSR43, 633–639.Google Scholar
  23. 23.
    Ugarova, N. N., Brovko, L. Yu., and Berezin, I. V. (1980) Immobilized firefly luciferase and its use in analysis.Anal. Leu.13, 881–892.CrossRefGoogle Scholar
  24. 24.
    Brovko, L. Yu and Ugarova N. N. (1980) Kinetics and mechanism of the inactivation and reactivation of immobilized luciferase of firefliesLuciola mingrelicaand the role of sulfhydryl groups in these processes.Biochemistry USSR45, 607–613.Google Scholar
  25. 25.
    Brovko, L. Yu., Kost, N. V., and Ugarova, N. N. (1980) Immobilized luciferase from the firefliesLuciola min grelica.Change in the pH dependence of the catalytic activity and stability of the enzyme after immobilization on various polysaccharide carriers.Biochemistry USSR45,1199–1204.Google Scholar
  26. 26.
    Ugarova, N. N., Brovko, L. Y., and Kost N. V. (1982) Immobilization of luciferase from the fireflyLuciola mingrelica.Catalytic properties and stability of the immobilized enzyme.Enzyme Microbial Technol.4, 224–228.CrossRefGoogle Scholar
  27. 27.
    Ugarova, N. N., Brovko, L. Y., and Beliaieva, E. I. (1983) Immobilization of luciferase from the fireflyLuciola mingrelica:Catalytic properties and thermostability of the enzyme immobilized on cellulose films.Enzyme Microbial Technol.5, 60–64.CrossRefGoogle Scholar
  28. 28.
    Ivanova, L. V., Brovko, L. Yu., Shekhovtsova, T. N., Ugarova, N. N., and Dolmanova, I. F. (1986) Bioluminescent method of determining the creatine phosphokinase activity using immobilized firefly luciferase.J. Anal. Chem. USSR41, 593–599.Google Scholar
  29. 29.
    Ugarova, N. N., Brovko, L. Yu., Ivanova, L. V., Shekhovtsova, T. N., and Dolmanova, I. F. (1986) Bioluminescent assay of creatine kinase activity using immobilized firefly extract.Anal. Biochem.158, 1–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Carrea, G., Boyara, R., Mazzola, G., Girotti, S., Roda, A., and Ghini,S. (1986) Bioluminescent continuous-flow assay of adenosine 5’-triphosphate using firefly luciferase immobilized on nylon tubes.Anal. Chem.58, 331–333.PubMedCrossRefGoogle Scholar
  31. 31.
    Carrea, G., Bovara, R., Girotti, S., Ferri, E., Ghini, S., and Roda, A. (1989) Continuous-flow bioluminescent determination of ATP in platelets using firefly luciferase immobilized on epoxy methacrylate.J. Biolum Chemilum3, 7–11.CrossRefGoogle Scholar
  32. 32.
    Worsfold, P. J. and Nabi, A. (1986) Bioluminescent assays with immobilized firefly luciferase based on flow injection analysis.Anal. Chim. Acta179, 307–313.CrossRefGoogle Scholar
  33. 33.
    Blum, L. J., Coulet, P. R., and Gautheron, D. C. (1985) Collagen strip with immobilized luciferase for ATP bioluminescent determination.Biotechnol. Bioeng.27, 232–237.PubMedCrossRefGoogle Scholar
  34. 34.
    Travis, J. and McElroy, W. D. (1966) Isolation and sequence of an essential sulfhydryl peptide at the active site of firefly luciferase.Biochemistry5, 2170–2176.PubMedCrossRefGoogle Scholar
  35. 35.
    Coulet, P. R., Julliard, J. H., and Gautheron, D. C. (1974) A mild method of general use for covalent coupling of enzymes to chemically activated collagen films.Biotechnol. Bioeng. 16,1055–1068.PubMedCrossRefGoogle Scholar
  36. 36.
    Blum, L. J. and Coulet, P. R. (1986) Atypical kinetics of immobilized firefly luciferase.Biotechnol. Bioeng. 28, 1154–1158.PubMedCrossRefGoogle Scholar
  37. 37.
    Jablonski, E. and DeLuca, M. (1976) Immobilization of bacterial luciferase and FMN reductase on glass rods.Proc. Natl. Acad. Sci. USA73, 3848–3851.PubMedCrossRefGoogle Scholar
  38. 38.
    Haggerty, C., Jablonski, E., Stay, L., and DeLuca, M. (1978) Continuous monitoring of reactions that produce NADH and NADPH using immobilized luciferase and oxidoreductases fromBeneckea harveyi. Anal. Biochem. 88,162–173.CrossRefGoogle Scholar
  39. 39.
    Jablonski, E. and DeLuca, M. (1979) Properties and uses of immobilized light-emitting enzyme systems fromBeneckea harveyi. Clin. Chem. 25, 1622–1627.Google Scholar
  40. 40.
    Ford, J. and DeLuca, M. (1981) A new assay for picomole levels of androsterone and testosterone using co-immobilized luciferase, oxidoreductase and steroid dehydrogenase.Anal. Biochem. 110, 43–48.PubMedCrossRefGoogle Scholar
  41. 41.
    Wienhausen, G. and DeLuca, M. (1982) Bioluminescent assays of picomole levels of various metabolites using immobilized enzymes.Anal. Biochem.127, 380–388.PubMedCrossRefGoogle Scholar
  42. 42.
    Roda, A., Kricka, L. J., DeLuca, M., and Hofmann, A. F. (1982) Bioluminescence measurement of primary bile acids using immobilized 7a-hydroxysteroid dehydrogenase: Application to serum bile acids.J. Lipid Res. 23, 1354–1361.PubMedGoogle Scholar
  43. 43.
    Schoelmerich, J., Hinkley, J. E., MacDonald, I. A., Hofmann, A. F., and DeLuca, M. (1983) A bioluminescent assay for 12-a-hydroxy bile acids using immobilized enzymes.Anal. Biochem. 133, 244–250.PubMedCrossRefGoogle Scholar
  44. 44.
    Schoelmerich, J., van Berge Henegouwen, G. P., Hofmann, A. F., and DeLuca, M. (1984) A bioluminescence assay for total 3a-hydroxy bile acids in serum using immobilized enzymes.Clin. Chim. Acta 137, 21–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Rossi, S. S., Clayton, L. M., and Hofmann, A. F. (1986) Determination of chenodiol bioequivalence using an immobilized multi-enzyme bioluminescence technique.J. P harm. Sci. 75, 288–290.Google Scholar
  46. 46.
    Rodriguez, O. and Guilbault, G. G. (1981) Immobilized bacterial luciferase for microscale analysis of creatine kinase activity.Enzyme Microb. Technol. 369–72.CrossRefGoogle Scholar
  47. 47.
    Ugarova, N. N., Lebedeva, O. V., and Frumkina, I. G. (1988) Bioluminescent microassay of various metabolites using bacterial luciferase co-immobilized with multienzyme systems.Anal. Biochem.173, 221–227.PubMedCrossRefGoogle Scholar
  48. 48.
    Blum, L. J. and Coulet, P. R. (1984) Bioluminescent determination of reduced nicotinamide adenine dinucleotide with immobilized bacterial lucif-erase and flavin mononucleotide oxidoreductase on collagen film.Anal. Chim. Acta161, 355–358.CrossRefGoogle Scholar
  49. 49.
    Kurkijärvi, K., Raunio, R., and Korpela, T. (1982) Packed-bed reactor of immobilized bacterial bioluminescence enzymes: A potential high-sensitivity detector for automated analyzers.Anal. Biochem. 125, 415–419.PubMedCrossRefGoogle Scholar
  50. 50.
    Vellom, D. C. and Kricka, L. J. (1986) Continuous-flow bioluminescent assays employing Sepharose-immobilized enzymes, inMethods in Enzymologyvol. 133 (DeLuca, M. A. and McElroy, W. D., eds.), Academic, New York, pp. 229–237.Google Scholar
  51. 51.
    Roda, A., Girotti, S., Ghini, S., Grigolo, B., Carrea, G., and Bovara, R. (1984) Continuous-flow determination of primary bile acids, by bioluminescence, with use of nylon-immobilized bacterial enzymes.Clin. Chem.30,206–210.PubMedGoogle Scholar
  52. 52.
    Girotti, S., Roda, A., Ghini, S., Grigolo, B., Carrea, G., and Boyara, R. (1984) Continuous flow analyses of NADH using bacterial bioluminescent enzymes immobilized on nylon.Anal. Leu.17, 1–12.Google Scholar
  53. 53.
    Roda, A., Girotti, S., and Carrea, G. (1986) Flow systems utilizing nylon-immobilized enzymes, inMethods in Enzymologyvol. 133 (DeLuca, M. A. and McElroy, W. D., eds.), Academic, New York, pp. 238–248.Google Scholar
  54. 54.
    Girotti, S., Roda, A., Piazzi, S., Carrea, G., Piacentini, A. L., Angelloti, M. A., Bovara, R., and Ghini, S. (1987) Bioluminescent flow sensors: L-Alanine determination in serum and urine.Anal. Leu.20, 1315–1330.CrossRefGoogle Scholar
  55. 55.
    Girotti, S., Roda, A., Angelloti, M. A., Ghini, S., Carrea, G., Bovara, R., Piazzi, S., and Merighi, R. (1988) Bioluminescence flow system for determination of branched-chain L-amino acids in serum and urine.Anal. Chim. Acta205,229–237.CrossRefGoogle Scholar
  56. 56.
    Girotti, S., Bassoli, C., Cascione, M. L., Ghini, S., Carrea, G., Bovara, R., Roda, A., Motta, R., and Petilino, R. (1989) Bioluminescent flow sensors: L-Lactate dehydrogenase activity determination in serum.J. Biolum. Chemilwn. 341–45.CrossRefGoogle Scholar
  57. 57.
    Nabi, A. and Worsfold, P. J. (1986) Bioluminescence assays with immobilised bacterial luciferase using flow injection analysis.Analyst 111, 1321–1324.Google Scholar
  58. 58.
    Nabi, A. and Worsfold, P. J. (1987) Flow injection procedures for the determination of ethanol and alcohol dehydrogenase using co-immobilised bacterial luciferase and oxidoreductase.Analyst112, 531–533.PubMedCrossRefGoogle Scholar
  59. 59.
    Roswell, D. H. and White, E. H. (1978) The chemiluminescence of luminol and related hydrazides, inMethods in Enzymologyvol. 57 (DeLuca, M. A., ed.), Academic, New York, pp. 409–423.Google Scholar
  60. 60.
    White, E. H., Zafiriou, O., Kägi, H. H., and Hill, J. H. M. (1964) Chemiluminescence of luminol: the chemical reaction.J. Am. Chem. Soc. 86, 940–941.CrossRefGoogle Scholar
  61. 61.
    White, E. H. and Bursey, M. M. (1964) Chemiluminescence of luminol and related hydrazides. The light emission step.J. Am. Chem. Soc. 86, 941,942.Google Scholar
  62. 62.
    Cormier, M. J. and Prichard, P. M. (1968) An investigation of the luminescent peroxidation of luminol by stopped flow techniques.J. Biol. Chem. 243, 4706–4714.PubMedGoogle Scholar
  63. 63.
    Maskiewicz, R., Sogah, D., and Bruice, T.C. (1979) Chemiluminescent reaction of lucigenin. I. Reactions of lucigenin with H2O2.J. Am. Chem. Soc. 101, 5347–5354.CrossRefGoogle Scholar
  64. 64.
    Isacsson, U. and Wettermark, G. (1974) Chemiluminescence in analytical chemistry.Anal. Chim. Acta68, 339–362.CrossRefGoogle Scholar
  65. 65.
    Totter, J. R. (1975) Light production in alkaline mixtures of reducing agents and dimethylbiacridylium nitrate.Photochem. Photobiol.22, 203–211.PubMedCrossRefGoogle Scholar
  66. 66.
    Mohan, A. G. (1985) Peroxyoxalate chemiluminescence, inChemi-and Bioluminescence(Burr, J. G., ed.), Marcel Dekker, New York, pp. 245–258.Google Scholar
  67. 67.
    Imai, K., Miyaguchi, K., and Honda, K. (1985) High-performance liquid chromatography-chemiluminescence reaction detection system of fluorescent compounds using TCPO and hydrogen peroxide, inBioluminescence and Chemiluminescence: Instruments and Applicationsvol. 2 (Van Dyke, K., ed.), CRC, Boca Raton, pp. 65–75.Google Scholar
  68. 68.
    Bostick, D. T. and Hercules, D. M. (1975) Quantitative determination of blood glucose using enzyme induced chemiluminescence of luminol.Anal. Chem. 47, 447–452.PubMedCrossRefGoogle Scholar
  69. 69.
    Tabata, M., Fukunaga, C., Ohyabu, M., and Murachi, T. (1984) Highly sensitive flow injection analysis of glucose and uric acid in serum using an immobilized enzyme column and chemiluminescence.J. Appt. Biochem. 6, 251–258.Google Scholar
  70. 70.
    Petersson, B. A., Hansen, E. H., and Ruzicka, J. (1986) Enzymatic assay by flow-injection analysis with detection by chemiluminescence: Determination of glucose, creatinine, free cholesterol and lactic acid using an integrated FIA microconduit.Anal. Leu. 19, 649–665.Google Scholar
  71. 71.
    Blum, L. J., Plaza, J. M., and Coulet, P. R. (1987) Chemiluminescent analyte microdetection based on the luminol H2O2reaction using peroxidase immobilized on new synthetic membranes.Anal. Lett.20, 317–326.CrossRefGoogle Scholar
  72. 72.
    Nau, V. and Nieman, T. A. (1979) Application of microporous membranes to chemiluminescence analysis.Anal. Chem. 51, 424–428.CrossRefGoogle Scholar
  73. 73.
    Pilosof, D. and Nieman, T. A. (1980) Localization of light emission in micro-porous membrane chemiluminescence cells. Anal. Chem. 52, 662–666.Google Scholar
  74. 74.
    Pilosof, D. and Nieman, T. A. (1982) Microporous membrane flow-cell with nonimmobilized enzyme for chemiluminescent determination of glucose.Anal. Chem. 54,1698–1701.PubMedCrossRefGoogle Scholar
  75. 75.
    Malavolti, N. L., Pilosof, D., and Nieman, T. A. (1985) Determination of cholesterol with a microporous membrane chemiluminescence cell with cholesterol oxidase in solution.Anal. Chim. Acta 170, 199–207.CrossRefGoogle Scholar
  76. 76.
    Williams D. C. III, Huff, G. F., and Seitz, W. R. (1976) Evaluation of peroxyoxalate chemiluminescence for determination of enzyme generated peroxide.Anal. Chem. 48, 1003–1006.PubMedCrossRefGoogle Scholar
  77. 77.
    Rigin, V. I. (1981) Determination of formaldehyde and formic acid in natural water by applying an immobilized enzyme and a chemiluminescence finish.J. Anal. Chem. USSR36, 1111–1115.Google Scholar
  78. 78.
    Rigin, V. I. (1982) Chemiluminescence determination of microamounts of oxalate and urate by means of flow-through columns containing immobilized enzymes.J. Anal. Chem. USSR 371302–1306.Google Scholar
  79. 79.
    Rigin, V. I. (1983) Determination of microamounts of L-amino acids by enzymatic oxidation reaction.J. Anal. Chem. USSR 38,1328–1330.Google Scholar
  80. 80.
    Honda, K., Miyaguchi, K., Nishino, H., Tanaka, H., Yao, T., and Imai, K. (1986) High-performance liquid chromatography followed by peroxyoxalate chemiluminescence detection of acetylcholine and choline utilizing immobilized enzymes.Anal. Biochem. 15350–53.PubMedCrossRefGoogle Scholar
  81. 81.
    Lippman, R. D. (1980) Sensitive solid-phase chemiluminescence microassay of thiols.Anal. Chim. Acta 116, 181–184.CrossRefGoogle Scholar
  82. 82.
    Branchini, B. R., Salituro, F. G., Hermes, J. D., and Post, N. J. (1980) Highly sensitive assays for proteinases using immobilized luminogenic substrates.Biochem. Biophys. Res. Commun. 97, 334–339.PubMedCrossRefGoogle Scholar
  83. 83.
    Hool, K. and Nieman, T. A. (1987) Chemiluminescence analysis in flowing streams with luminol immobilized on silica and controlled-pore glass.Anal. Chem. 59, 869–872.CrossRefGoogle Scholar
  84. 84.
    Freeman, T. M. and Seitz, W. R. (1978) Chemiluminescence fiber optic probe for hydrogen peroxide based on the luminol reaction.Anal. Chem. 50,12421246.Google Scholar
  85. 85.
    Abdel-Latif, M. S. and Guilbault, G. G. (1988) Fiber-optic sensor for the determination of glucose using micellar enhanced chemiluminescence of the peroxyoxalate reaction.Anal. Chem. 602671–2674.PubMedCrossRefGoogle Scholar
  86. 86.
    Blum, L. J., Gautier, S. M., and Coulet, P. R. (1988) Luminescence fiber-optic biosensor.Anal. Leu. 21, 717–726.CrossRefGoogle Scholar
  87. 87.
    Blum, L. J., Gautier, S. M., and Coulet, P. R. (1989) Design of luminescence photobiosensors.J. Biolum. Chemilum.4, 543–550.CrossRefGoogle Scholar
  88. 88.
    Gautier, S. M., Blum, L. J., and Coulet, P. R. (1989) Fibre-optic sensor with co-immobilised bacterial bioluminescence enzymes.Biosensors 4181–194.PubMedCrossRefGoogle Scholar
  89. 89.
    Blum, L. J., Gautier, S. M., and Coulet, P. R. (1989) Highly stable bioluminescence-based fiber-optic sensor using immobilized enzymes fromVibrio harveyi. Anal. Leu. 22,2211–2222.CrossRefGoogle Scholar
  90. 90.
    Gautier, S. M., Blum, L. J., and Coulet, P. R. (1990) Fibre-optic biosensor based on luminescence and immobilized enzymes: Microdetermination of sorbitol, ethanol and oxaloacetate.J. Biolum. Chemilum.5, 57–63.CrossRefGoogle Scholar
  91. 91.
    Gautier, S. M., Blum, L. J., and Coulet, P. R. (1990) Alternate determination of ATP and NADH with a single bioluminescence-based fiber-optic sensor, inSensors and ActuatorsB1,580–584.Google Scholar
  92. 92.
    Blum, L. J., Gautier, S. M., and Coulet, P. R. (1989) Continuous flow bioluminescent assay of NADH using a fiber-optic sensor.Anal. Chim. Acta226, 331–336.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Pierre R. Coulet
  • Loïc J. Blum

There are no affiliations available

Personalised recommendations