High Temperature Neutron Diffraction Studies of YBa2-xSrxCu3O7-δ

  • J. FaberJr.
  • R. L. Hitterman
Part of the Materials Chemistry at High Temperatures book series (MCHT, volume 1)

Abstract

In situ,high-temperature neutron diffraction experiments have been performed on the nonstoichiometric, Sr-doped, 123 superconducting material YBa2-xSrXCu307-δ using a unique, restricted-angle, high temperature furnace constructed for use with time-of-flight scattering techniques. The furnace provides a completely isolated specimen chamber in the temperature range of 20 < T < 1400C, and the oxygen partial pressure can be controlled in the range of 10-20 < P02 < 1 atm (105 Pa). For x = 0.33 (in YBa2-xSrXCu307-δ) and PO2 = 1 atm, an order-disorder transition is observed at T = 650 C. The crystal symmetry changes from orthorhombic (Pmmm) below the transition to tetragonal (P4/mmm) above. The mechanism of the phase transition involves the redistribution of anions on the 0(1) and 0(5) lattice sites; these sites become equivalent in the high temperature tetragonal phase. With P02. = 1 atm the nonstoichiometric state of the specimen changes with temperature, hence the experimental results must be mapped onto the (T, δ) plane. The transition temperature, Tot decreases with increasing Sr concentration. Under isothermal conditions with T = 490C, the transition occurs at PO2 2 = 3 x 10-3 atm.

Keywords

Furnace Depression Boron Nitride Hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jorgensen, J. D., Veal, B. W., Kwok, W. K., Crabtree, G. W., Umezawa, A., Nowicki, L. J., and Paulikas, A. P. Phys. Rev. B36, 5731 (1987).Google Scholar
  2. 2.
    Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefish, M. S. Phys. Rev. B36, 3608 (1987).Google Scholar
  3. 3.
    Fritas, P. P. and Plaskett, T, S. Phys. Rev. B36, 5723 (1987).CrossRefGoogle Scholar
  4. 4.
    Kubo, Y., Nakabayashi, Y., Tabuchi, J., Yoshitake, T., Ochi, A., Utsumi, K., Iagarashi, H., and Yonezawa, M. Japn Jour. Appl. Phys. 26, L1888 (1987).CrossRefGoogle Scholar
  5. 5.
    Kishio, K., Shimoyana, J., Hasegawa, T., Kitezawa, K., and Fueki, K. Japn. Jour. Appl. Phys. 26, L1228 (1987).CrossRefGoogle Scholar
  6. 6.
    Specht, E. D., Sparks, C. J., Dhere, A. G., Brynestad, J., Cavin, D. B., Kroeger, D. M., Oye, H. A., and Seiler, F. J. Phys. Rev. B37, 7426 (1988).Google Scholar
  7. 7.
    McKinnon, W. R., Post, M. L., Selwyn, L. S., Pleizier, G., Tarascon, J. M., Barboux, P., Greene, L. H., and Hull, W. Phys. Rev. B(submitted).Google Scholar
  8. 8.
    Bakker, H., Welch, D. D., and Lazareth, Jr., O. W. Phys. Rev. Bin press.Google Scholar
  9. 9.
    Salamons, E., Koeman, N., Brouwer, R., deGroot, D. G., and Greissen, R. Solid State Commun. 64, 1141 (1987).CrossRefGoogle Scholar
  10. 10.
    Willie, L. T., Berera, A., and deFontaine, D. Phys. Rev. Lett.60,1065 (1988).CrossRefGoogle Scholar
  11. 11.
    Nakanura, K. and Ogawa, K. Japn. Jour. Appl. Phys., submitted. Google Scholar
  12. 12.
    Jorgensen, J. D., Shaked, H., Hinks, D. G., Dabrowski, B., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Kwok, W K., and Nunez, L. H. Physica C153–155, 578 (1988).Google Scholar
  13. 13.
    Beno, M. A., Soderholm, L., Capone, D. W., Hinks, D. G., Jorgensen, J. D., Grace, J. D., Schuller, I. K., Segre, C. U., and Zhang, K. Appl. Phys. Lett. 51, 57 (1987).CrossRefGoogle Scholar
  14. 14.
    Veal, B. W., Kwok, W. K., Umezawa, A., Crabtree, G. W., Jorgensen, J. D., Downey, J. W., Nowicki, L. J., Mitchell, A. W., Paulikas, A. P., and Sowers, C. H. Appl. Phys. Lett. 51, 279 (1987).CrossRefGoogle Scholar
  15. 15.
    Faber, Jr. J., Shaked, H., Veal, B. W., Hitterman, R. L., Paulikas, A. P., Nowicki, L. J., and Downey, J. W. Advanced Characterization Techniques for CeramicsMcVay, G. L., Pike, G. E., and Young, W. S., eds., American Ceramics Society, Westerville, OH, 1989, in press.Google Scholar
  16. 16.
    Faber, Jr., J. and Hitterman, R. L. Advances in X-Ray Analysis29, Plenum, New York, 1985, pp. 119–130.Google Scholar
  17. 17.
    Jorgensen, J. D. and Faber, Jr., J., ICANS-VI Meeting, ANL, June 17—July 2, 1982, ANL Report ANL-82–80(1983), pp. 105–114.Google Scholar
  18. 18.
    MacEwen, S. R., Faber, Jr., J., and Turner, A. P. L. Acta Met. 31, 657 (1983).CrossRefGoogle Scholar
  19. 19.
    Shaked, H., Jorgensen, J. D., Faber, Jr., J., Hinks, D. G., and Dabrowski, B. Phys. Rev. Rapid Commun.in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. FaberJr.
    • 1
  • R. L. Hitterman
    • 1
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations