Skip to main content

A Predictive Thermodynamic Model for Complex High Temperature Solution Phases XI

  • Chapter
Materials Chemistry at High Temperatures

Part of the book series: Materials Chemistry at High Temperatures ((MCHT,volume 1))

Abstract

A computer-based model has been developed that predicts phase compositions of simple and complex multicomponent, non-ideal, high temperature solutions. Component activities in liquid and solid solutions, and gas phase partial pressures can also be determined from the model. The applicability of the model has been demonstrated for representative test cases with solutions of compounds containing up to eight elements. Examples considered here include various silicate, aluminate, aluminosilicate, and lime aluminosilicates, in addition to soda lime and borosilicate glasses, calcined dolomite and illite minerals, and an alkali-rich coal slag. The model results are compared with mass spectrometrically determined vapor species identities and partial pressures and/or activities. The model has, as its basis, the assignment of complex or associated solution components (e.g., Na2SiO3(l) and Na2Si205(l) in Na20-SiO2mixtures) that account for the known nonideal interactions. Gibbs energies of formation functions (ΔfG(T)) for the oxide components, present as simple and complex phases, are explicitly included in an extensive database for use with multicomponent equilibrium codes. Although the components are included explicitly, it is assumed that in most cases, the components model short range order and do not necessarily represent discrete molecular, ionic, or other structural entities.

In this chapter, earlier work performed in our laboratory on the development and application of the model is reviewed. Also, new results are presented for several alkali silicate and borosilicate systems where new experimental data are available.

Index Entries: Activity; alkali; Gibbs energy functions; glass; high temperature; mass spectrometry; molten salts; oxides; silicates; slag thermochemistry; thermodynamic modeling; vapor pressure.

Article Note

*Author to whom all correspondence and reprint orders should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hastie, J. W., Plante, E. R., and Bonnell, D. W. Metal Bonding and Interactions in High Temperature Systems with Emphasis on Alkali MetalsGole, J. L. and Stwalley W. C., eds., ACS Symposium Series 179 American Chemical Society, Washington DC 1982, pp. 543–600.

    Chapter  Google Scholar 

  2. Kirkbride, B. J. Glass Tech. 20, 174 (1979).

    CAS  Google Scholar 

  3. Hastie, J. W. Pure and Applied Chem. 56, 1583 (1984).

    Article  CAS  Google Scholar 

  4. Plante, E. R. Characterization of High Temperature Vapors and GasesHastie, J. W., ed., NBS SP561/1, US Gov. Printing Office, Washington, DC, 1979, p. 265.

    Google Scholar 

  5. Bonnell, D. W. and Hastie, J. W. ibid.ref. 4, p. 357.

    Google Scholar 

  6. Hastie, J. W., Plante, E. R., and Bonnell, D. W. Alkali Vapor Transport in Coal Conversion and Combustion SystemsNBSIR 81–2279, NIST, Gaithersburg, MD, 1981.

    Google Scholar 

  7. Hastie, J. W., Horton, W. S., Plante, E. R., and Bonnell, D. W. High Temp.-High Press. 14, 669–679 (1982).

    CAS  Google Scholar 

  8. Richardson, F. D. Physical Chemistry of Melts in MetallurgyAcademic Press, New York, NY, 1974.

    Google Scholar 

  9. Turkdogari, E. T. Physical Chemistry of High Temperature TechnologyAcademic Press, New York, NY, 1980.

    Google Scholar 

  10. Hastie, J. W. and Bonnell, D. W. High Temp. Sci. 19, 275 (1985).

    CAS  Google Scholar 

  11. Redlich, O., Kister, A. T., and Turnquist, C. E. Phase Equilibria. 2, 49 (1952).

    Google Scholar 

  12. Grover, J. Thermodynamics in GeologyFraser, D. G., ed., Reidel, Dordrecht, Holland, 1977, p. 67.

    Chapter  Google Scholar 

  13. Ansara, I. Int. Met. Rev. 1, 20 (1979).

    Article  Google Scholar 

  14. Hillert, M., Sundeman, B., and Wang X. TRITA-MAC-0355,Materials Research Center, Royal Institute of Technology, Stockholm, 1987.

    Google Scholar 

  15. Eriksson, G. Chemica Scripta 8 100 (1975); SOLGASMIX, version 3, with a NIST-modified input module is currently in use.

    Google Scholar 

  16. Rudnyi, E. B., Vovk, O. M., Siderov, L. N., Stolyarova, V. L., Shakhmatkin, B. A., and Rakhimov, V. I. Fiz. Khim. Stekla14, 218 (1988). (See also elsewhere in this volume)

    CAS  Google Scholar 

  17. Levin, E. M., Robbins, C. R., and McMurdie, H. R. Phase Diagrams for Ceramists1, diagram 192 (1964).

    Google Scholar 

  18. JANAF Thermochemical Tables3rd Edition, Chase, M. W., Jr., Davies, C. A., Downey, J. R., Jr., Frurip, D. J., McDonald, R. A., & Syverud, A. N. eds. J. Phys. Chem. Ref. Data 14 (1985).

    Google Scholar 

  19. Choudary, U. V., Gaskell, D. R., and Belton, G. R. Met. Trans. B. 8b, 67 (1977).

    Article  CAS  Google Scholar 

  20. Levin, E. M., Robbins, C. R., and McMurdie, H. R. Phase Diagrams for Ceramistsdiagram 2070 (1969).

    Google Scholar 

  21. Chase, M. W., Jr., private communication.

    Google Scholar 

  22. Horton, W. S. Interim Contract Report WSH018. 1 (1987).

    Google Scholar 

  23. Hastie, J. W., Bonnell, D. W., and Plante, E. R. Proc. Symp. on High Temperature Materials Chemistry IIMunir, Z. A. and Cubicciotti, D., eds., The Electrochemical Society, Pennington NJ, 1983, pp. 349–359.

    Google Scholar 

  24. Levin, E. M., Robbins, C. R., and McMurdie, H. R. Phase Diagrams for Ceramists1, diagram 800 (1964).

    Google Scholar 

  25. Hastie, J. W., Bonnell, D. W., and Plante, E. R. Proc. of Engineering Foundation Conf. on Mineral Matter and Ash Deposition from CoalVorres, K., ed., Santa Barbara, CA, 1989.

    Google Scholar 

  26. Hastie, J. W., Plante E. R., and Bonnell, D. W. Vaporization of Simulated Nuclear Waste GlassNBSIR 83–2731, NIST, Gaithersburg, MD, 1983.

    Google Scholar 

  27. Kaufman, L. CALPHAD. 3, 27 (1979).

    Article  Google Scholar 

  28. Chastel, R., Bergman, C., Rogez J., and Mathieu, J.-C. Chem. Geol. 62, 19 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonnell, D.W., Hastie, J.W. (1990). A Predictive Thermodynamic Model for Complex High Temperature Solution Phases XI. In: Hastie, J.W. (eds) Materials Chemistry at High Temperatures. Materials Chemistry at High Temperatures, vol 1. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0481-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0481-7_23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6781-2

  • Online ISBN: 978-1-4612-0481-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics