Major and Trace Elements in Spruce Needles by NAA

  • Armin Wyttenbach
  • Sixto Bajo
  • Leonhard Tobler

Abstract

Concentrations of 23 elements in needles of Norway spruce (P. abies) have been determined at 47 sites. It is shown that a thorough removal of the aerosols sitting on the needles surface is necessary in order to get the inherent needle concentrations. Neutron activation was used to determine concentrations from 10−9 to 10−2 g/g. Irradiation and counting conditions are given. The essential elements, Ca, Cl, Cu, Fe, K, Mg, Mn, P, Zn, and the nonessential elements, Al, As, Ba, Br, Co, Cs, Hg, La, Na, Rb, Sb, Sc, Sr, and V, could be determined. The concentrations of most elements are about a factor of 6 smaller than the mean concentrations in land plants. Analytical reproducibility was much better than the variation among individual trees, and the variation within sites is smaller than among sites. In general, essential elements have smaller variations than nonessential elements. For some elements, variations between sites are owing to differences in the soil pH or the emission situation.

Index Entries

P. abies, elemental concentrations in needles neutron activation analysis surface contamination on needles, removal variation of concentrations, intra- and intersite distribution functions of concentrations 

Abbreviations

NAA

neutron activation analysis

CV

coefficient of variation

OF

degrees of freedom

LSD

least significant difference

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Mohnen, Sci. Am. 259, 14 (1988).CrossRefGoogle Scholar
  2. 2.
    B. Mason, C. B. Moore, Principles of Geochemistry, Wiley, New York, 1982, p. 258.Google Scholar
  3. 3.
    A. Wyttenbach, and L. Tobler, Trees 2, 52 (1988).CrossRefGoogle Scholar
  4. 4.
    A. Wyttenbach, S. Bajo, and L. Tobler, J. Radioanal. Nucl. Chem. Articles 114, 137 (1987).CrossRefGoogle Scholar
  5. 5.
    S. Bajo, and A. Wyttenbach, Anal. Chem. 48, 902 (1976).Google Scholar
  6. 6.
    S. Bajo and A. Wyttenbach, Extraction liquide-liquide de As, Sb, Se et Te par le diéthyldithiocarbamate de Zn, #EIR 336, Würenlingen, Switzerland, 1978.Google Scholar
  7. 7.
    S. Bajo, and A. Wyttenbach, Talanta 35, 747 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Wyttenbach, L. Tobier, and S. Bajo, J. Aerosol Sci. 18, 609 (1987).CrossRefGoogle Scholar
  9. 9.
    B. Hasselrot and P. Grennfelt, Water, Air, Soil Poll. 34, 135 (1987).CrossRefGoogle Scholar
  10. 10.
    G. P. J. Draaijers, W. P. M. Ivens, and W. Bleuten, Water, Air, Soil Poll. 42, 129 (1988).CrossRefGoogle Scholar
  11. 11.
    A. Wyttenbach, L. Tobier, and S. Bajo, Toxicol Environ. Chem. 19, 25 (1989).CrossRefGoogle Scholar
  12. 12.
    A. Wyttenbach, L. Tobier, S. Bajo, and H. Conradin, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Armin Wyttenbach
    • 1
  • Sixto Bajo
    • 1
  • Leonhard Tobler
    • 1
  1. 1.Paul Scherrer InstituteVilligen PSISwitzerland

Personalised recommendations