Antibodies to Beta-Adrenergic Receptors

  • Craig C. Malbon
  • Cary P. Moxham
  • Harvey J. Brandwein
Part of the The Receptors book series (REC)


Contemporary biochemists and molecular biologists strive to understand the relationship between the function and the detailed chemical structure of macromolecules. Whereas chemical and direct physical analyses are employed to probe molecular structure, specific antibodies to proteins have been invaluable reagents in the determination of the fine-structure of the antigen as well as the immunologic relationship of the antigen to other proteins. Often a crowning achievement to many years of arduous work purifying and characterizing a cellular protein is the production of specific antibodies to the protein. The availability of specific antibodies then propels the direction of research into investigations of entirely new areas of protein structure, function, and regulation that could not be approached by any other route.


A431 Cell Adrenergic Receptor Adenylate Cyclase Activity Anti Peptide Antibody Antipeptide Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alho, H., Dillion-Carter, O., Moxham, C. P., Malbon, C. C., and Chuang, D.-M. (1988) Changes in immunohistochemical properties of β-adrenergic receptors in frog erythrocytes by isoproterenol-induced desensitization. Life Sciences 42,321–328.PubMedGoogle Scholar
  2. Aoki, C., Joh, T. H., and Pickel, V. M. (1987) Ultrastructural localization of βadrenergic receptor-like immunoreactivity in the cortex and neostriatum of rat brain. Brain Res. 437, 264–282.PubMedGoogle Scholar
  3. Bahouth, S. W., Kelley, L. K., Smith, C. H., Arbabian, M. A., Ruoho, A. E., and Malbon, C. C. (1986) Identification of a novel 76-kDa form of β-adrenergic receptors. Biochem. Biophys. Res. Comm. 141, 411–417.PubMedGoogle Scholar
  4. Bahouth, S. W. and Malbon, C. C. (1987) Human β-adrenergic receptors: Simultaneous purification of βl-and β2 adrenergic-receptor peptides. Biochem. J. 248,557–566.PubMedGoogle Scholar
  5. Bahouth, S. W., Berrios, M., George, S. T., Hadcock, J. R., Wang, H. -S., and Malbon, C. C. (1988) β-adrenoceptors: New advances in purification and analysis, in Progress in Catecholamine Research, Liss, pp. 157–165.Google Scholar
  6. Beisiegel, U., Kita, T., Anderson, R. G. W., Schneider, W. J., Brown, M. S., and Goldstein, J. L. (1981a) Immunologic crossreactivity of the low density lipoprotein receptor from bovine adrenal cortex, human fibroblasts, canine liver and adrenal gland, and rat liver. J. Biol. Chem. 256,4071–4078.Google Scholar
  7. Beisiegel, U., Schneider, W. J., Goldstein, J. L., Anderson, R. G. W., and Brown, M. S. (1981b) Monoclonal antibodies to the low density lipoprotein receptor as probes for study of receptor-mediated endocytosis and the genetics of familial hypercholesterolemia. J. Biol. Chem. 256, 11923–11931.Google Scholar
  8. Benovic, J. L., Shoff, R. G. L., Caron, M. G., and Lefkowitz, R. J. (1984) The mammalian β2 adrenergic receptor: Purification and characterization. Biochemistry 23, 4510–4518.PubMedGoogle Scholar
  9. Bers, G. and Garfin, D. (1985) Protein and nucleic acid blotting and immunochemical detection. BioTechniques 3, 276–287.Google Scholar
  10. Brandwein, H., Lewicki, J., and Murad, F. (1981) Production and characterization of monoclonal antibodies to soluble rat lung guanylate cyclase. Proc. Natl. Acad. Sci. USA 78, 4241–4245.PubMedGoogle Scholar
  11. Caron, M. G., Srinivasan, Y., Snyderman, R., and Lefkowitz, R. J. (1979) Antibodies raised against purified β-adrenergic receptors specifically bind βadrenergic ligands. Proc. Natl. Acad Sci. USA 76, 2263–2267.PubMedGoogle Scholar
  12. Cerione, R. A., Staniszewski, C., Benovic, J. L., Lefkowitz, R. J., Caron, M. G., Gierschick, P., Somers, R., Spiegel, A. M., Codina, J., and Birnbaumer, L. (1985) Specificity of the functional interactions of the β-adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J. Biol. Chem. 260, 1493–1500.PubMedGoogle Scholar
  13. Cervantes-Olivier, P., Delavier-Klutchko, C., Durieu-Trautmann, O., Kaveri, S., Desmandril, M., and Strosberg, A. D. (1988) The β2 adrenergic receptors of human epidermoid carcinoma cells bear two different types of oligosaccharides which influence expression on the cell surface. Biochem. J. 250, 133–143.PubMedGoogle Scholar
  14. Choi, A. H. C., and Lee, P. W. K. (1988) Does the β-adrenergic receptor function as a reovirus receptor? Virology 163, 193–197.Google Scholar
  15. Chuang, D. M. (1985) A monoclonal antibody to a membrane component that interacts with the β-adenergic receptor. J. Cyclic Nucleotide Protein Phosphor. Res. 10, 281–292.PubMedGoogle Scholar
  16. Chung, F. -Z., Lentes, K. -U., Gocayne, J., Fitzgerald, M., Robinson, D., Kerlavage, A. R., Fraser, C. M., and Venter, J. C. (1987) Cloning and sequence analysis of the human brain β-adrenergic receptor. FEBS Lett. 211, 200–206.PubMedGoogle Scholar
  17. Cleveland, W. L., Wassermann, N. H., Sarangarajan, R., Penn, A. S., and Erlanger, B. F. (1983) Monoclonal antibodies to the acetylcholine receptor by a normally functioning auto-antiidiotypic mechanism. Nature 305, 56–57.PubMedGoogle Scholar
  18. Co, M. S., Gaulton, G. N., Tominaga, A., Homcy, C. J., Fields, B. N., and Greene, M. I. (1985) Structural similarities between the mammalian β-adrenergic and reovirus type 3 receptors. Proc. Natl. Acad. Sci. USA 82, 5315–5318.PubMedGoogle Scholar
  19. Conti-Tronconi, B., Hunkapiller, M., Lindstrom, J., and Raftery, M. (1982) Subunit structure of the acetylcholine receptor from Electrophorous electricus. Proc. Natl. Acad. Sci. USA 79, 6489–6493.Google Scholar
  20. Conti-Tronconi, B. M. and Raftery, M. A. (1982) The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. Annu. Rev. Biochem. 51, 491–530.PubMedGoogle Scholar
  21. Couraud, P.O., Delavier-Klutchko, D., Durieu-Trautmann, O., and Strosberg, A. D. (1981) Antibodies raised against β-adrenergic receptors stimulate adenylate cyclase. Biochem. Biophys. Res. Commun. 99, 1295–1302.PubMedGoogle Scholar
  22. Couraud, P.O., Lu, B. Z., Schmutz, A., Durieu-Trautmann, O., Klutchko-Delavier, C., Hoebeke, J., and Strosberg, A. D. (1983) Immunological studies of βadrenergic receptors. J. Cell. Biochem. 21, 187–193.PubMedGoogle Scholar
  23. Cuatrecasas, P. (1972) Affinity chromatography and purification of the insulin receptor of liver cell membranes. Proc. Natl. Acad. Sci. USA 69,1277–1281.PubMedGoogle Scholar
  24. Cubero, A. and Malbon, C. C. (1984) The fat cell β-adrenergic receptor: Purification and characterization of a mammalian β1-adrenergic receptor. J. Biol. Chem. 259, 1344–1350.PubMedGoogle Scholar
  25. Czech, M. P. (1985) The nature and regulation of the insulin receptor: Structure and function. Annu. Rev. Physiol. 47, 357–381.PubMedGoogle Scholar
  26. Dietz, M. H., Sy, M. -S., Benacerraf, B., Nisonoff, A., Greene, M. L, and Germain, R. H. (1981) Antigen-and receptor-driven regulatory mechanisms. J. Exp. Med. 153, 450–463.PubMedGoogle Scholar
  27. Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J., and Strader, C. D. (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79.PubMedGoogle Scholar
  28. Dixon, R. A. F., Sigal, I. S., Rands, E., Register, R. B., Candelore, M. R., Blake, A. D., and Strader, C. D. (1987) Ligand binding to the β-adrenergic receptor involves its rhodopsin-like core. Nature 326, 73–77.PubMedGoogle Scholar
  29. Dixon, R. A. F., Sigal, I. S., Candelore, M. R., Register, R. B., Scattergood, W., Rands, E., and Strader, C. D. (1987) Structural features required for ligand binding to the β-adrenergic receptor. EMBO J. 6, 3269–3275.PubMedGoogle Scholar
  30. Emorine, L. J., Marullo, S., Delavier-Klutchko, C., Kaveri, S. V., Durieu-Trautmann, O., and Strosberg, A. D. (1987) Structure of the gene for human βadrenergic receptor: Expression and promoter characterization. Proc. Natl. Acad. Sci. USA 84, 6995–6999.PubMedGoogle Scholar
  31. Erickson, P. F., Minier, L. N., and Lasher, R. S. (1982) Quantitative electrophoretic transfer of polypeptides from SDS polyacrylamide gels to nitrocellulose sheets: A method for their reuse in immunoautoradiographic detection of antigens. J. Immunol. Methods 51, 241–249.PubMedGoogle Scholar
  32. Farid, N. R., Briones-Urbina, R., and Bear, J. C. (1983) Graves’ disease The thyroid stimulating antibody and immunological networks. Mol. Asp. Med 6, 355–457.Google Scholar
  33. Farid, N. R. and Lo, T. C. Y. (1985) Antiidiotypic antibodies as probes for receptor structure and function. Endocr. Rev. 6, 1–23.PubMedGoogle Scholar
  34. Fraser, C. M. (1989) Site-directed mutagenesis of β-adrenergic receptors. J. Biol. Chem. 264, 9266–9270.PubMedGoogle Scholar
  35. Fraser, C. M. and Lindstrom, J. (1984) The use of monoclonal antibodies in receptor characterization and purification, in Molecular and Chemical Characterization of Membrane Receptors. Alan R. Liss, New York, pp. 1–30.Google Scholar
  36. Fraser, C. M. and Venter, J. C. (1980) Monoclonal antibodies to β-adrenergic receptors: Use in purification and molecular characterization of β receptors. Proc. Natl. Acad. Sci. USA 77, 7034–7038.PubMedGoogle Scholar
  37. Fraser, C. M. and Venter, J. C. (1982) The size of the mamamlian lung β2 adrenergic receptor as determined by target size analysis and immunoaffinity chromatography. Biochem. and Biophys. Res. Commun. 109, 21–29.Google Scholar
  38. Fraser, C. M. and Venter, J. C. (1984) Antireceptor antibodies in human disease. J. Allergy and Clin. Immun. 74, 661–673.Google Scholar
  39. Frielle, T., Collins, S., Daniel, K. W., Caron, M. G., Lefkowitz, R. J., and Kobilka, B. K. (1987) Cloning of the cDNA for the human β-adrenergic receptor. Biochemistry 84, 7920–7924.Google Scholar
  40. Gaulton, G. N., Co, M. S., Royer, H. D., and Greene, M. I. (1985) Antiidiotypic antibodies as probes of cell surface receptors. Mol. Cell Biochem. 65, 5–21.Google Scholar
  41. Gefter, M. L., Margulies, D. H., and Scharff, M. D. (1977) A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somatic Cell Genet. 3, 231–236.PubMedGoogle Scholar
  42. George, S. T. and Malbon, C. C. (1985) Large-scale purification of β-adrenergic receptors from mammalian cells in culture. Prep. Biochem. 15, 349–366.PubMedGoogle Scholar
  43. George, S. T., Benlos, M., Hadcock, J. R., Wang, H.-Y., and Malbon, C. C. (1988) Receptor density and cyclic AMP accumulation: Analysis in CHO cells exhibiting stable expression of a cDNA that encodes the β2-adrenergic receptor. Biochem. Biophys. Res. Commun. 150, 665–672.PubMedGoogle Scholar
  44. George, S. T., Arbabian, M. A., Ruoho, A. E., Kiely, J., and Malbon, C. C. (1989) High-effeciency expression of mammalian β-adrenergic receptors in baculovirus-infected insect cells. Biochem. Biophys. Res. Comm. 163,1265–1269.PubMedGoogle Scholar
  45. Gramsch, C., Schulz, R., Kosin, S., and Herz, A. (1988) Monoclonal antiidiotypic antibodies to opioid receptors. J. Biol. Chem. 263, 5853–5859.PubMedGoogle Scholar
  46. Graziano, M. P., Moxham, C. P., and Malbon, C. C. (1985) Purified rat hepatic β2-adrenergic receptor. J. Biol. Chem. 260, 7665–7674.PubMedGoogle Scholar
  47. Green, N., Alexander, H., Olson, A., Alexander, S., Shinnick, T. M., Sutcliffe, J. G., and Lerner, R. A. (1982) Immunogenic structure of the influenza virus hemagglutinin. Cell 28, 477–487.PubMedGoogle Scholar
  48. Guillet, J. G., Chamat, S., Hoebeke, J., and Strosberg, A. D. (1984) Production and detection of monoclonal antiidiotype antibodies directed against a monoclonal anti-beta-adrenergic ligand antibody. J. Immunol. Methods 74, 163–171.PubMedGoogle Scholar
  49. Guillet, J.G., Kaveri, S. V., Durieu, O., Delavier, C., Hoebeke, J., and Strosberg, A. D. (1985) β-adrenergic agonist activity of a monoclonal antiidiotypic antibody. Proc. Natl. Acad. Sci. USA 82,1781–1784.PubMedGoogle Scholar
  50. Gullick, W., Tzartos, S., and Lindstrom, J. (1981) Monoclonal antibodies as probes of acetylcholine receptor structure. Biochemistry 20, 2173–2180.PubMedGoogle Scholar
  51. Hadcock, J. R., Wang, H.-Y., and Malbon, C. C. (1989) Agonist-induced destabilization of β-adrenergic receptor mRNA. J. Biol. Chem. 264,19928–19933.PubMedGoogle Scholar
  52. Herrera, R., Petruzzelli, L., Thomas, N., Bramson, H. N., Kaiser, E. T., and Rosen, O. M. (1985) An antipeptide antibody that specifically inhibits insulin receptor autophosphorylation and protein kinase activity. Proc. Natl. Acad. Sci. USA 82, 7899–7903.PubMedGoogle Scholar
  53. Hoebeke, J., Vauquelin, G., and Strosberg, A. D. (1977) The production and characterization of antibodies against β-adrenergic antagonists. Biochem. Pharmacol. 27,1527–1532.Google Scholar
  54. Homcy, C. J., Rockson, S. G., and Haber, E. (1982) An antiidiotypic antibody that recognizes the β-adrenergic receptor. J. Clin. Invest. 69,1147–1154.PubMedGoogle Scholar
  55. Homcy, C. J., Rockson, S. G., Countaway, J., and Egan, D. A. (1983) Purification and characterization of the mammalian β2-adrenergic receptor. Biochemistry 22, 660–668.PubMedGoogle Scholar
  56. Hunkapiller, M. W. and Hood, L. E. (1983) Protein sequence analysis: Automated microsequencing. Science 219, 650–659.PubMedGoogle Scholar
  57. Ishimoto, I., Kiyama, H., Malbon, C. C., Iwahashi, Manabe, R., and Tohyama, M. (1989) Localization of adrenergic receptors in the rat retina: An immunocytochemistry study. Neurosci. Res. in press.Google Scholar
  58. Islam, M. N., Pepper, B. M., Briones-Urbina, R., and Farid, N. R. (1983a) Biological activity of anti-thyrotropin antiidiotypic antibody. Eur. J. Immunol. 13, 57–62.Google Scholar
  59. Islam, M. N., Briones-Urbina, R., Bako, G., and Farid, N. R. (1983b) Both TSH and thyroid-stimulating antibody of Graves’ disease bind to a M, 197,000 holoreceptor. Endocrinology 113, 436–438.Google Scholar
  60. Itami, S., Kino, J., Halprin, K. M., and Adachi, K. (1987) Immunohistochemical study of β-adrenergic receptors in the psoriatic epidermis using an antialprenolol antiidiotypic antibody. Arch Dermatol. Res. 279, 439–443.PubMedGoogle Scholar
  61. Jacobs, S., Chang, K. J., and Cuatrecasas, P. (1978) Antibodies to purified insulin receptor have insulin-like activity. Science 200, 1283–1284.PubMedGoogle Scholar
  62. Jerne, N. K. (1974) Towards a network theory of the immune system. Ann. Immunol. (Inst. Pasteur) 125C, 373–388.Google Scholar
  63. Johnstone, A. and Thorpe, R. (1982) Immunochemistry in Practice (Blackwell Scientific Publishers, London).Google Scholar
  64. Karnik, S. S., Sakmar, T. P., Chen, H.-B., and Khorana, H. G. (1988) Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci. USA 85, 8459–8463.PubMedGoogle Scholar
  65. Kasuga, M., Hedo, J. A., Yamada, K. M., and Kahn, C. R. (1983) The structure of insulin receptor and its subunits. J. Biol. Chem. 257, 10392–10399.Google Scholar
  66. Kaveri, S. V., Cervantes-Olivier, P., Delavier-Klutchko, C., and Strosberg, A. D. (1987) Monoclonal antibodies directed against the human A431 β2-adrenergic receptor recognize two major polypeptide chains. Eur. J. Biochem. 167, 449–456.PubMedGoogle Scholar
  67. Kelley, L. K., Smith, C. H., and King, B. F. (1983) Isolation and partial characterization of the basal cell membrane of human placental trophoblast. Biochem. Biophys. Acta 734, 91–98.PubMedGoogle Scholar
  68. Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.PubMedGoogle Scholar
  69. Kull, F. C., Jr., Jacobs, S., Su, Y.-F., and Cuatrecasas, P. (1982) A monoclonal antibody to human insulin receptor. Biochem. Biophys. Res. Commun. 106, 1019–1026.PubMedGoogle Scholar
  70. Lerner, R. A. (1982) Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature 299, 592–596.Google Scholar
  71. Liggett, S. B., Bouvier, M., O’Dowd, B. F., Caron, M. G., Lefkowitz, R. J., and DeBlasi, A. (1989) Substitution of an extracellular cysteine in the β2 adrenergic receptor enhances agonist-promoted phosphorylation and receptor desensitization. Biochem. Biophys. Res. Commun. 165, 257–263.PubMedGoogle Scholar
  72. Mahan, L. C., McKernan, R. M., and Insel, P. A. (1987) Metabolism of alpha-and beta-adrenergic receptors in vitro and in vivo. Annu. Rev. Pharmacol. Toxicol. 27, 215–235.Google Scholar
  73. Malbon, C. C. (1990) Purification of β-adrenergic receptors: Isolation of mammalian βl-and β2-subtypes, in Receptor Purification (Litwack, G., ed., Humana Press) in press.Google Scholar
  74. Malbon, C. C., George, S. T., and Moxham, C. P. (1987) Intramolecular disulfide bridges: Avenues to receptor activation? Trends Biochem. Sci. 12,172–175.Google Scholar
  75. Malbon, C. C., Moxham, C. P., Rapiejko, P. J., Bahouth, S. W., Brandwein, H., and George, S. T. (1987) The structure and biology of β-adrenergic receptors: Analysis by biochemical, immunologic, and molecular biological approaches, in Synaptic Transmitters and Receptors (John Wiley and Sons, New York), 239–248.Google Scholar
  76. Marasco, W. A. and Becker, E. L. (1982) Antiidiotype as antibody against the formyl peptide chemotaxis receptor of the neutrophil. J. Immunol. 128, 963–968.PubMedGoogle Scholar
  77. Marglin, A. and Merrifield, R. B. (1970) Chemical synthesis of peptides and proteins. Annu. Rev. Biochem. 39, 841–866.PubMedGoogle Scholar
  78. Morgan, D. O., Ho, L., Korn, L. J., and Roth, R. A. (1986) Insulin action is blocked by a monoclonal antibody that inhibits the insulin receptor kinase. Proc. Natl. Acad. Sci. USA 83, 328–332.PubMedGoogle Scholar
  79. Moxham, C. P. and Malbon, C. C. (1985) Fat cell β1-adrenergic receptor: Structural evidence for existence of disulfide bridges essential for ligand binding. Biochemistry 24, 6072–6077.PubMedGoogle Scholar
  80. Moxham, C. P., Cubero, A., Brandwein, H., and Malbon, C. C. (1985a) Murine poly-clonal antibodies to the fat cell β1 adrenergic receptor. Biophys. J. 47, 200a.Google Scholar
  81. Moxham, C. P., Graziano, M. P., Brandwein, H., and Malbon, C. C. (1985c) Mammalian β1- and β2-adrenergic receptors: Structural and immunological comparisons. Fed. Proc. 44, 1795.Google Scholar
  82. Moxham, C. P., George, S. T., Graziano, M. P., Brandwein, H., and Malbon, C. C. (1986a) Mammalian β1- and β2 adrenergic receptors- Immunologic and structural comparisons. J. Biol. Chem. 261, 14562–14570.Google Scholar
  83. Moxham, C. P., George, S. T., Brandwein, H., and Malbon, C. C. (1986b) Mammalian β-adrenergic receptors: Immunolgical analysis of native forms in membranes. Fed. Proc. 45,15–69.Google Scholar
  84. Moxham, C. P., Ross, E. M., George, S. T., and Malbon, C. C. (1988) β-adrenergic receptors display intramolecular disulfide bridges in situ: Analysis by immunoblotting and functional reconstitution. Mol. Pharmacol. 33,486–492.PubMedGoogle Scholar
  85. Nathans, J. and Hogness, D. S. (1983) Isolation, sequence analysis, and intronexon arrangement of the gene encoding bovine rhodopsin. Ce11 34, 807–814.Google Scholar
  86. Nathans, J., Thomas, D., and Hogness, D. S. (1986) Molecular genetics or human color vision: The genes encoding blue, green, and red pigments. Science 232, 193–202.PubMedGoogle Scholar
  87. Nepom, J. T., Tardieu, M., Epstein, R. L., Noseworthy, J. H., Weiner, H. L., Gentsch, J., Fields, B. N., and Greene, M. I. (1982) Virus-binding receptors: Similarities to immune receptors as determined by antiidiotypic antibodies. Surv. Immunol. Res. 1, 255–261.PubMedGoogle Scholar
  88. Noseworthy, J. H., Fields, B. N., Dichter, M. A., Sobotka, C., Pizer, E., Perry, L. L., Nepom, J. T., and Greene, M. I. (1983) Cell receptors for the mammalian reovirus. I. Syngeneic monclonal antiidiotypic antibody identifies a cell surface receptor for reovirus. J. Immunol. 131, 2533–2538.PubMedGoogle Scholar
  89. Olmsted, J. B. (1981) Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J. Biol. Chem. 256, 11955–11957.PubMedGoogle Scholar
  90. Owen, F. L., Ju, S. T., and Nisonoff, A. (1977) Presence on idiotype-specific suppressor T cells of receptors that interact with molecules bearing the idiotype. J. Exp. Med. 145, 1559–1566.PubMedGoogle Scholar
  91. Patrick, J. and Lindstrom, J. (1973) Autoimmune response to acetylcholine receptor. Science 180, 871–872.PubMedGoogle Scholar
  92. Pedersen, S. E. and Ross, E. M. (1985) Functional activation of β-adrenergic receptors by thiols in the presence or absence of agonists. J. Biol. Chem. 260, 14150–14157.PubMedGoogle Scholar
  93. Rapiejko, P. J., George, S. T., and Malbon, C. C. (1988) Primary structure of a human protein which bears structural similarities to members of the rhodopsin/beta-adrenergic receptor family. Nucleic Acids Res. 16, 8721–8722.PubMedGoogle Scholar
  94. Relyveld, E. H. and Ben-Efraim, S. (1981) Preparation of highly immunogenic protein conjugates by direct coupling to glutaraldehyde-treated cells: Comparison with commonly used preparations. J. Immunol. Methods 40, 209–217.PubMedGoogle Scholar
  95. Rockson, S. G., Homcy, C. J., and Haber, E. (1980) Anti-alprenolol antibodies in the rabbit. Circ. Res. 46, 808–813.PubMedGoogle Scholar
  96. Roof, D. J., Applebury, M. L., and Sternweis, P. C. (1985) Relationships within the family of GTP-binding proteins isolated from bovine central nervous system. J. Biol. Chem. 260,16242–16249.PubMedGoogle Scholar
  97. Ros, M., Northup, J. K., and Malbon, C. C. (1988) Steady-state levels of G-proteins and β-adrenergic receptors in rat fat cells. J. Biol. Chem. 263 4362–4368.PubMedGoogle Scholar
  98. Roth, R. A., Cassell, D. J., Wong, K. Y., Maddux, B. A., and Goldfine, I. D. (1982) Monoclonal antibodies to the human insulin receptor block insulin binding and inhibit insulin action. Proc. Natl. Acad. Sci. USA 79 7312–7316.PubMedGoogle Scholar
  99. Rubenstein, R. C., Wong, S. K.-F., and Ross, E. M. (1987) The hydrophobic tryptic core of the β-adrenergic receptor retains G, regulatory activity in response to agonists and thiols. J. Biol. Chem. 262, 16655–16662.PubMedGoogle Scholar
  100. Sato, M., Kubota, Y., Malbon, C. C., and Tohyama, M. (1989) Immunohistochemical evidence that most rat corticotrophs contain β-adrenergic receptors. Neuroendocrinology 50, 577–583.PubMedGoogle Scholar
  101. Sawutz, D. G., Bassel-Duby, R., and Homcy, C. J. (1987) High-affinity binding of reovirus type 3 to cells that lack β-adrenergic receptor activity. Life Sci. 40, 399–406.PubMedGoogle Scholar
  102. Schreiber, A. B., Couraud, P. O., Andre, C., Vray, B., and Strosberg, A. D. (1980) Anti-alprenolol antiidiotypic antibodies bind to β-adrenergic receptors and modulate catecholamine-sensitive adenylate cyclase. Proc. Natl. Acad. Sci. USA 77,7385–7389.PubMedGoogle Scholar
  103. Schreiber, A. B., Lax, I., Yarden, Y., Eshhar, Z., and Schlessinger, J. (1981) Monoclonal antibodies against receptor for epidermal growth factor induce early and delayed effects of epidermal growth factor. Proc. Nall. Acad. Sci. USA 78, 7535–7539.Google Scholar
  104. Schreiber, A. B., Liberman, T. A., Lax, I., Yarden, Y., and Schlessinger, J. (1983) Biological role of epidermal growth factor-receptor clustering. J. Biol. Chem. 258, 846–853.PubMedGoogle Scholar
  105. Sege, K. and Peterson, P. A. (1978) Use of antiidiotypic antibodies as cell-surface receptor probes. Proc. Natl. Acad. Sci. USA 75, 2443–2447.PubMedGoogle Scholar
  106. Shechter, Y., Maron, R., Elias, D., and Cohen, I. R. (1982) Autoantibodies to insulin receptor spontaneously develop as antiidiotypes in mice immunized with insulin. Science 216, 542–545.PubMedGoogle Scholar
  107. Shorr, R. G. L., Strohsacker, M. W., Lavin, T. N., Lefkowitz, R. J., and Caron, M. G. (1982) The adrenergic receptor of the turkey erythrocyte: Molecular heterogeneity revealed by purification and photoaffinity labeling. J. Biol. Chem. 257, 12341–12350.PubMedGoogle Scholar
  108. Sigel, M. B., Sinha, Y. N., and Vanderlaan, W. P. (1983) Production of antibodies by inoculation into lymph nodes. Methods Enzymol. 93, 3–12.PubMedGoogle Scholar
  109. Smith, D. E. and Fisher, P. A. (1984) Identification, developmental regulation, and response to heat shock of two antigenically related forms of a major nuclear envelope protein in Drosoohila embryos: Application of an improved method for affinity purification of antibodies using polypeptides immobilized on nitrocellulose blots. J. Cell Biol. 99, 20–28.PubMedGoogle Scholar
  110. Strader, C. D., Pickel, V. M., Joh, T. H., Strohsacker, M. W., Shorr, R. G. L., Lefkowitz, R. G., and Caron, M. G. (1983) Antibodies to the β-adrenergic receptor: Attenuation of catecholamine-sensitive adenylate cyclase and demonstration of postsynaptic receptor localization in brain. Proc. Natl. Acad. Sci. USA 80, 1840–1844.PubMedGoogle Scholar
  111. Strader, C. D., Sigal, I. S., Blake, A. D., Cheung, A. H., Register, R. B., Rands, E., Zemcik, B. A., Candelore, M. R., and Dixon, R. A. F. (1987) The carboxyl terminus of the hamster β-adrenergic receptor expressed in mouse L cells is not required for receptor sequestration. Cell 49, 855–863.PubMedGoogle Scholar
  112. Strosberg, A. D. (1984) Antiidiotypic antibodies as immunological internal images of hormones, in Idiotypy in Biology and Medicine (Academic), pp. 365–383.Google Scholar
  113. Sutcliffe, J. G., Shinnick, T. M., Green, N., and Lerner, R. A. (1983) Antibodies that react with predetermined sites on proteins. Science 219, 660–666.PubMedGoogle Scholar
  114. Takano, T., Kubota, Y., Malbon, C. C., and Tohyama, M. (1989) β-adrenergic receptors in the vasopressin-containing neurons in the paraventricular and supraoptic nucleis of the rat. Brain Research 499, 174–179.PubMedGoogle Scholar
  115. Temeles, G. L., Gibbs, J. B., D’Alonzo, J. S., Sigal, I. S., and Scolnick, E. M. (1985) Yeast and mammalian ras proteins have conserved biochemical properties. Nature 313, 700–703.PubMedGoogle Scholar
  116. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedGoogle Scholar
  117. Tzartos, S. J. and Lindstrom, J. M. (1980) Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc. Natl. Acad. Sci. USA 77, 755–759.PubMedGoogle Scholar
  118. Van Obberghen, E., Kasuga, M., Le Cam, A., Hedo, J. A., Itin, A., and Harrison, L. C. (1981) Biosynthetic labeling of insulin receptor: Studies of subunits in cultured human IM-9 lymphocytes. Proc. Natl. Acad Sci. USA 78, 1052–1056.PubMedGoogle Scholar
  119. Venter, J. C., Fraser, C. M., and Harrison, L. C. (1980) Autoantibodies to β2-adrenergic receptors: A possible cause of adrenergic hyporesponsiveness in allergic rhinitis and asthma. Science 207, 1361–1362.PubMedGoogle Scholar
  120. Venter, J. C. and Fraser, C. M. (1981) The development of monoclonal antibodies to β-adrenergicreceptors and their use in receptor purification and characterization, in Monoclonal Antibodies in Endocrine Research (Fellows, R. and Eisenbarth, G., eds.), Raven, New York, pp. 119–134.Google Scholar
  121. Venter, J. C. and Fraser, C. M. (1983) The structure of alpha-and beta-adrenergic receptors. Trends Pharmacol. Sci. 4, 256–258.Google Scholar
  122. Ventimiglia, R., Greene, M. I., and Geller, H. M. (1987) Localization of βadrenergic receptors on differentiated cells of the central nervous system in culture. Proc. Natl. Acad. Sci. USA 84, 5073–5077.PubMedGoogle Scholar
  123. Wanaka, A., Kiyama, H., Murakami, T., Matsumoto, M., Kamada, T., Malbon, C. C., and Tohyama, M. (1989) Immunocytochemical localization of β-adrenergic receptors in the rat brain. Brain Res. 485, 125–140.PubMedGoogle Scholar
  124. Wanaka, A., Malbon, C. C., Matsumoto, M., and Tohyama, M. (1989) Presence of catecholamine axon-terminals which contain β-adrenergic receptor in the periventricular zone of the rat hypothalamus. Brain Res. 479, 190–193.PubMedGoogle Scholar
  125. Wang, H.-S., Berrios, M., and Malbon, C. C. (1988a) Indirect immunofluorescence localization of β-adrenergic receptors and G-proteins in human epidermoid carcinoma A431 cells. Biochem. J. 263, 519–533.Google Scholar
  126. Wang, H. -S., Berrios, M., and Malbon, C. C. (1989b) Localization of β-adrenergic receptors in A431 cell in situ: Effect of chronic exposure to agonist. Biochem. J. 263, 533–538.Google Scholar
  127. Wang, H. Y., Lipfert, L., Malbon, C. C., and Bahouth, S. (1989c) Site-directed anti-peptide antibodies define the topography of the β-adrenergic receptor. J. Biol. Chem. 264, 14424–14431.Google Scholar
  128. Wasserman, N. H., Penn, A. S., Freimuth, P. I., Treptow, N., Wentzel, S., Cleveland, W. L., and Erlanger, B. F. (1982) Antiidiotypic route to antiacetylcholine receptor antibodies and experimental myasthenia gravis. Proc. Natl. Acad. Sci. USA 79, 4810–4814.Google Scholar
  129. Weiss, E., Hadcock, J., Johnson, G. L., and Malbon, C. C. (1987) Antipeptide antibodies directed against cytoplasmic rhodopsin sequences recognize the β-adrenergic receptor. J. Biol. Chem. 262, 4319–4323.PubMedGoogle Scholar
  130. Weiss, E. R., Kelleher, D. J., and Johnson, G. L. (1988) Mapping sites of interaction between rhodopsin and transducin using rhodopsin antipeptide antibodies. J. Biol. Chem. 263, 6150–6154.PubMedGoogle Scholar
  131. Wrenn, S. and Haber, E. (1979) An antibody specific for the propranolol binding site of cardiac muscle. J. Biol. Chem. 254, 6577–6582.PubMedGoogle Scholar
  132. Yarden, Y., Rodriguez, H., Wong, S. K.-F., Brandt, D. R., May, D. C., Burnier, J., Harkins, R. N., Chen, E. Y., Ramachandran, J., Ullrich, A., and Ross, E. M. (1986) The avian β-adrenergic receptor: Primary structure and membrane topology. Proc. Natl. Acad. Sci. USA 83, 6795–6799.PubMedGoogle Scholar
  133. Young, R. A. and Davis, R. W. (1983) Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA 80, 1194–1198.PubMedGoogle Scholar
  134. Zucker, C. S., Cowman, A. F., and Rubin, G.M. (1985) Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40, 851–858.Google Scholar
  135. Zucker, C. S., Cowman, A. F., and Rubin, G. M. (1985) Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40, 851–858.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Craig C. Malbon
  • Cary P. Moxham
  • Harvey J. Brandwein

There are no affiliations available

Personalised recommendations