Insulin Receptor Isolation Through Avidin-Biotin Technology

  • Frances M. Finn
  • Klaus Hofmann
Part of the Receptor Purification book series (RP, volume 1)


The ability to quantitate hormone receptors through binding of their radiolabeled ligands has significantly enlarged our view of endocrine disorders. For example, the finding that the plasma membrane concentration of receptors is a dynamic property of the cell, i.e., that receptor number can decrease in the presence of chronically elevated concentrations of hormones and, thus, dampen the cellular response to the hormone, has given us a new insight into the basis for endocrine dysfunction. A better understanding of the receptors themselves should help us to identify abnormal receptors and lead to an appreciation of the function of the hormone-receptor complex.


Insulin Receptor Wheat Germ Agglutinin Insulin Binding Affinity Resin Receptor Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brooker, R. J. and Slayman, C. W. (1982) J. Biol. Chem. 257,12051–12055.PubMedGoogle Scholar
  2. Carpino, L. A. (1957) J. Am. Chem. Soc. 79, 98–101.CrossRefGoogle Scholar
  3. Cuatrecasas, P. (1972) Proc. Natl. Acad. Sci. USA 69, 318–322.PubMedCrossRefGoogle Scholar
  4. DeMeyts, P. (1976) in Methods in Receptor Research, part I (Blecher, M., ed.), Dekker, New York, pp. 301–383.Google Scholar
  5. Duckworth, W. C. and Kitabchi, A. E. (1981) Endocrine Reviews 2,210–233.PubMedCrossRefGoogle Scholar
  6. Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, D., Ou, J.-H., Masiarz, F., Kan, Y. W., Goldfine, I. D., Roth, R. A., and Rutter, W. J. (1985) Cell 40, 747–758.PubMedCrossRefGoogle Scholar
  7. Finn, F. M. and Hofmann, K. (1985) in Methods in Enzymology, vol 109(Birnbaumer, L. and O’Malley, B. W., eds.), Academic, New York, pp. 418–445.Google Scholar
  8. Finn, F. M., Titus, G., and Hofmann, K. (1984) Biochemistry 23,2554–2558.PubMedCrossRefGoogle Scholar
  9. Finn, F. M., Titus, G., Horstman, D., and Hofmann, K. (1984) Proc. Natl. Acad. Sci. USA 81, 7328–7332.PubMedCrossRefGoogle Scholar
  10. Fujita-Yamaguchi, Y., Choi, S., Sakamoto, Y., and Itakura, K. (1983) J. Biol. Chem. 258, 5045–5049.PubMedGoogle Scholar
  11. Fujita-Yamaguchi, Y. and Kathuria, S. (1985) Proc. Natl. Acad. Sci. USA 82,6095–6099.PubMedCrossRefGoogle Scholar
  12. Geiger, R., Schöne, H.-H., and Pfaff, W. (1971) Hoppe Seylers Z. Physiol. Chem. 352,1487–1490.PubMedCrossRefGoogle Scholar
  13. Green, N. M. (1966) Biochem. J. 101, 774–780.PubMedGoogle Scholar
  14. Green, N. M. (1975) Adv. Protein Chem. 29, 85–133.PubMedCrossRefGoogle Scholar
  15. Hofmann, K., Finn, F. M., Friesen, H.-J., Diaconescu, C., and Zahn, H. (1977) Proc. Natl. Acad. Sci. USA 74, 2697–2700.PubMedCrossRefGoogle Scholar
  16. Hofmann, K., Romovacek, H., Titus, G., Ridge, K., Raffensperger, J. A., and Finn, F. M. (1987) Biochemistry 26, 7384–7390.PubMedCrossRefGoogle Scholar
  17. Kasuga, M., Fujita-Yamaguchi, Y., Blithe, D. L., and Kahn, C. R. (1983) Proc. Natl. Acad. Sci. USA 80, 2137–2141.PubMedCrossRefGoogle Scholar
  18. Kathuria, S., Hertmen, S., Grunfeld, C., Ramachandran, J., and Fujita-Yamaguchi, Y. (1986) Proc. Natl. Acad. Sci. USA 83, 8570–8574.PubMedCrossRefGoogle Scholar
  19. Lowry, O. H., Rosebrough, N.J., Farr, A. L., and Randall, R. J. (1951) I Biol. Chem.193, 265–275.Google Scholar
  20. Massague, J. and Czech, M. P. (1982) J. Biol. Chem. 257, 6729–6738.PubMedGoogle Scholar
  21. Massague, J., Pilch, P. F., and Czech, M. P. (1981) J. Biol. Chem. 256, 3182–3190.PubMedGoogle Scholar
  22. May, J. M., Williams, R. H., and de Haen, C. (1978) J. Biol. Chem. 253, 686–690.PubMedGoogle Scholar
  23. Morgan, D. O., Ho, K., Korn, L. J., and Roth, R. A. (1986) Proc. Natl. Acad. Sci. USA 83, 328–332.PubMedCrossRefGoogle Scholar
  24. Petruzzelli, L., Herrera, R., and Rosen, O. M. (1984) Proc. Natl. Acad. Sci. USA 81, 3327–3331.PubMedCrossRefGoogle Scholar
  25. Pullen, R. A., Lindsay, D. G., Wood, S. P., Tickle, I. J., Blundell, T. L., Wollmer, A., Krail, G., Brandenburg, D., Zahn, H., Gliemann, J., and Gammeltoft, S. (1976) Nature 259, 369–373.PubMedCrossRefGoogle Scholar
  26. Resh, M. D. (1985) in Molecular Basis of Insulin Action (Czech, M. P., ed.), Plenum, New York, pp. 451–464.CrossRefGoogle Scholar
  27. Ridge, K. D., Hofmann, K., and Finn, F.M. (1988) Proc. Natl. Acad. Sci. USA 85, 9489–9493.PubMedCrossRefGoogle Scholar
  28. Scatchard, G. (1949) Ann. NY Acad. Sci. 51, 660–672.CrossRefGoogle Scholar
  29. Shia, M. A., Rubin, J. B., and Pilch, P. F. (1983) J. Biol. Chem. 258,14450–14455.PubMedGoogle Scholar
  30. Stekhoven, F. S. and Bonting, S. L. (1981) Physiol. Revs. 61,1–76.Google Scholar
  31. Tasaka, Y., Sekine, M., Wakatsuki, M., Ohgawara, H., and Shizume, K. (1975) Horm. Metab. Res. 7, 205–206.CrossRefGoogle Scholar
  32. Udenfriend, S., Stein, S., Bohlen, P., Dairman, W., Leimgruber, W., and Weigele, M. (1972) Science 178, 871–872.PubMedCrossRefGoogle Scholar
  33. Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756–761.PubMedCrossRefGoogle Scholar
  34. White, M. F., Haring, H. U., Kasuga, M., and Kahn, C. R. (1983) J. Biol. Chem. 259, 255–264.Google Scholar
  35. Wilden, P. A. and Pessin, J. E. (1987) Biochem. J. 245, 325–331.PubMedGoogle Scholar
  36. Williams, P. F. and Turtle, J. R. (1979) Biochim. Biophys. Acta 579, 367–374.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Frances M. Finn
  • Klaus Hofmann

There are no affiliations available

Personalised recommendations