Skip to main content

Well-Adjusted Models for Curves over Dedekind Rings

  • Chapter
Arithmetic Algebraic Geometry

Part of the book series: Progress in Mathematics ((PM,volume 89))

  • 1223 Accesses

Abstract

Let O be an excellent Dedekind ring with perfect residue fields, and let Y = Spec(O). Let C be a curve over Y. (For precise definitions, see §1; we assume C has a smooth geometrically irreducible general fibre, but we do not assume C is regular or complete). In this paper we will prove a relative minimal models Theorem, and a variant due to M. Artin of the Deligne-Mumford stable reduction Theorem. To state these results, let M(C) be the set of regular curves C′ for which there is a proper birational Y-morphism C′ → C. Let ≥ be the partial order on M(C) defined by C′ ≥ C″ if there is a proper morphism C′ → C″ over C.

Both authors are partially supported by MSRI, NSF and Sloan Foundation grants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artin, M.: Lipman’s proof of resolution of singularities for surfaces, in Arithmetic Geometry, G. Cornell and J. Silverman editors, Springer-Verlag, New York Berlin Heidelberg (1986), p. 267–287.

    Chapter  Google Scholar 

  2. Bourbaki, N.: Algèbre Commutative, Eléments de Math. 27, 28, 30, 31, Hermann, Paris (1961–1965).

    Google Scholar 

  3. Chinburg, T.: Minimal Models for Curves over Dedekind rings, in Arithmetic Geometry, G. Cornell and J. Silverman editors, Springer-Verlag, New York Berlin Heidelberg (1986), p. 309–326.

    Chapter  Google Scholar 

  4. Chinburg, T. and Rumely, R.: The Capacity Pairing, to appear.

    Google Scholar 

  5. Deligne, P. and Mumford, D.: The irreducibility of curves of a given genus, Publ. Math. I.H.E.S., 36 (1969), p. 75–109.

    MathSciNet  MATH  Google Scholar 

  6. Grothendieck, A.: Eléments de géométrie algébrique (EGA) I–IV, Publ. Math. I.H.E.S., 4,8,11,17,20,24,28,32 (1960–1967).

    Google Scholar 

  7. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics No.52, third ed., Springer-Verlag, New York Heidelberg Berlin (1983).

    MATH  Google Scholar 

  8. Lichtenbaum, S.: Curves over discrete valuation rings, Amer. J. Math. 15, no. 2(1968), p. 380–405.

    Article  MathSciNet  Google Scholar 

  9. Lipman, J.: Desingularization of two-dimensional schemes, Ann. Math. 107 (1978), p. 151–207.

    Article  MathSciNet  MATH  Google Scholar 

  10. Matsumura, H.: Commutative Algebra, W.A. Benjamin, New York (1970).

    MATH  Google Scholar 

  11. Milne, J.S.: Étale Cohomology, Princeton Univ. Press, Princeton (1980).

    MATH  Google Scholar 

  12. Mumford, D.: The topology of normal singularities on an algebraic surface and a criterion for simplicity, Publ. Math. I.H.E.S., 9 (1961), p. 5–22.

    MathSciNet  MATH  Google Scholar 

  13. Shafarevitch, I.: Lectures on Minimal Models and Birational Transformations of Two-dimensional Schemes, Tata Institute, Bombay (1966).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chinburg, T., Rumely, R. (1991). Well-Adjusted Models for Curves over Dedekind Rings. In: van der Geer, G., Oort, F., Steenbrink, J. (eds) Arithmetic Algebraic Geometry. Progress in Mathematics, vol 89. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0457-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0457-2_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6769-0

  • Online ISBN: 978-1-4612-0457-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics