The old subvariety of Jo(pq)

  • Kenneth A. Ribet
Part of the Progress in Mathematics book series (PM, volume 89)


Let p and q be distinct primes. The old part of J o (pq) is the abelian subvariety A + B of J o (pq) generated by the images
$$ A = {\rm Im} age({J_0}{(p)^2}\xrightarrow{\alpha }{J_0}(pq)),B = {\rm Im} age({J_0}({q^2})\xrightarrow{\beta }{J_0}(pq)) $$
of the two indicated degeneracy maps. Here, J o (N) denotes the Jacobian Pic°(X o (N)) of the standard modular curve X o (N), for each integer N ≥ 1. Also, we have written J o (p)2 for the product J o (p) × J o (p), and have used analogous notation for J o (q)2. The definitions of α and β will be given below; see also [6], §2a.


Exact Sequence Modular Form Abelian Variety Cyclic Subgroup Modular Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Deligne, P., Rapoport, M.: Schémas de modules de courbes elliptiques. Lecture Notes in Mathematics 349, 143–316 (1973)MathSciNetCrossRefGoogle Scholar
  2. [2]
    Deligne, P., Serre, J-P.: Formes modulaires de poids 1. Ann. Sci. Ecole Norm. Sup. 7, 507–530 (1974)MathSciNetMATHGoogle Scholar
  3. [3]
    (SGA 7 I) Grothendieck, A.: Groupes de monodromie en géométrie algébrique. Lecture Notes in Mathematics 288. Berlin-Heidelberg-New York: Springer 1972MATHGoogle Scholar
  4. [4]
    Katz, N. M., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Annals of Math. Studies 108. Princeton: Princeton University Press 1985MATHGoogle Scholar
  5. [5]
    Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math. IHES 47, 33–186 (1977)MathSciNetMATHGoogle Scholar
  6. [6]
    Mazur, B.: Rational isogenics of prime degree. Invent. Math. 44, 129–162 (1978)MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Mazur, B., Wiles, A.: Class fields of abelian extensions of Q. Invent. Math. 76, 179–330 (1984)MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Mumford, D.: Abelian Varieties. London: Oxford University Press 1970MATHGoogle Scholar
  9. [9]
    Ogg, A.: Hyperelliptic modular curves. Bull. Soc. Math. France 102, 449–462 (1974)MathSciNetMATHGoogle Scholar
  10. [10]
    Ogg, A.: Diophantine equations and modular forms. Bull. AMS 81, 14–27 (1975)MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Ogg, A.: Rational points on certain elliptic modular curves. Proc. Symp. Pure Math. 24, 221–231 (1973)MathSciNetGoogle Scholar
  12. [12]
    Raynaud, M.: Schémas en groupes de type (p,…, p). Bull. Soc. Math. France 102, 241–280 (1974)MathSciNetMATHGoogle Scholar
  13. [13]
    Ribet, K.: Galois action on division points of abelian varieties with real multiplications. Am. J. Math. 98, 751–804 (1976)MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Ribet, K.: Congruence relations between modular forms. Proc. International Congress of Mathematicians 1983, 503–514Google Scholar
  15. [15]
    Ribet, K.: On modular representations of Gal((math)/Q) arising from modular forms. Invent. Math. To appearGoogle Scholar
  16. [16]
    Serre, J-P.: Sur les représentations modulaires de degré 2 de Gal((math)/Q). Duke Math. J. 54, 179–230 (1987)MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Serre, J-P., Tate, J.: Good reduction of abelian varieties. Annals of Math. 88, 492–517 (1968)MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton: Princeton University Press 1971MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenneth A. Ribet

There are no affiliations available

Personalised recommendations