The old subvariety of Jo(pq)

  • Kenneth A. Ribet
Chapter
Part of the Progress in Mathematics book series (PM, volume 89)

Abstract

Let p and q be distinct primes. The old part of J o (pq) is the abelian subvariety A + B of J o (pq) generated by the images
$$ A = {\rm Im} age({J_0}{(p)^2}\xrightarrow{\alpha }{J_0}(pq)),B = {\rm Im} age({J_0}({q^2})\xrightarrow{\beta }{J_0}(pq)) $$
of the two indicated degeneracy maps. Here, J o (N) denotes the Jacobian Pic°(X o (N)) of the standard modular curve X o (N), for each integer N ≥ 1. Also, we have written J o (p)2 for the product J o (p) × J o (p), and have used analogous notation for J o (q)2. The definitions of α and β will be given below; see also [6], §2a.

Keywords

Tate Summing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Deligne, P., Rapoport, M.: Schémas de modules de courbes elliptiques. Lecture Notes in Mathematics 349, 143–316 (1973)MathSciNetCrossRefGoogle Scholar
  2. [2]
    Deligne, P., Serre, J-P.: Formes modulaires de poids 1. Ann. Sci. Ecole Norm. Sup. 7, 507–530 (1974)MathSciNetMATHGoogle Scholar
  3. [3]
    (SGA 7 I) Grothendieck, A.: Groupes de monodromie en géométrie algébrique. Lecture Notes in Mathematics 288. Berlin-Heidelberg-New York: Springer 1972MATHGoogle Scholar
  4. [4]
    Katz, N. M., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Annals of Math. Studies 108. Princeton: Princeton University Press 1985MATHGoogle Scholar
  5. [5]
    Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math. IHES 47, 33–186 (1977)MathSciNetMATHGoogle Scholar
  6. [6]
    Mazur, B.: Rational isogenics of prime degree. Invent. Math. 44, 129–162 (1978)MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Mazur, B., Wiles, A.: Class fields of abelian extensions of Q. Invent. Math. 76, 179–330 (1984)MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Mumford, D.: Abelian Varieties. London: Oxford University Press 1970MATHGoogle Scholar
  9. [9]
    Ogg, A.: Hyperelliptic modular curves. Bull. Soc. Math. France 102, 449–462 (1974)MathSciNetMATHGoogle Scholar
  10. [10]
    Ogg, A.: Diophantine equations and modular forms. Bull. AMS 81, 14–27 (1975)MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Ogg, A.: Rational points on certain elliptic modular curves. Proc. Symp. Pure Math. 24, 221–231 (1973)MathSciNetGoogle Scholar
  12. [12]
    Raynaud, M.: Schémas en groupes de type (p,…, p). Bull. Soc. Math. France 102, 241–280 (1974)MathSciNetMATHGoogle Scholar
  13. [13]
    Ribet, K.: Galois action on division points of abelian varieties with real multiplications. Am. J. Math. 98, 751–804 (1976)MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Ribet, K.: Congruence relations between modular forms. Proc. International Congress of Mathematicians 1983, 503–514Google Scholar
  15. [15]
    Ribet, K.: On modular representations of Gal((math)/Q) arising from modular forms. Invent. Math. To appearGoogle Scholar
  16. [16]
    Serre, J-P.: Sur les représentations modulaires de degré 2 de Gal((math)/Q). Duke Math. J. 54, 179–230 (1987)MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Serre, J-P., Tate, J.: Good reduction of abelian varieties. Annals of Math. 88, 492–517 (1968)MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton: Princeton University Press 1971MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenneth A. Ribet

There are no affiliations available

Personalised recommendations