Advertisement

Asymptotic Properties of Isotropic Brownian Flows

  • Yves le Jan
Part of the Progress in Probability book series (PRPR, volume 19)

Abstract

Denote by Diff(M) the group of C diffeomorphisms of a Riemannian manifold M. Define a Brownian flow on M as a Diff(M)-valued process Φt, with independent incrementst1, Φt2 ο Φt1 -1, ..., Φt1+1 ο Φti -1 if, t1 < t2 ... < ti). We assume in addition that the increments of the flow are stationarys(law) ~ Φt+s ο Φt -1) and that for any init ial value xM, the one point process Φt(x) is a Brownian motion on M. An analytical characterization of Brownian flows is given in [1].

Keywords

Brownian Motion Asymptotic Property Dirichlet Form Curvature Vector Part Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baxendale, P., Brownian motion on the diffeomorphism group I, Com-positio Mathematica 53 (1984), pp. 19–50.MathSciNetMATHGoogle Scholar
  2. [2]
    Baxendale, P. and Harris, T.E., Isotropic stochastic flows, Annals of Probab. 14 (1986), pp. 1155–1179.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Fukushima, M., “Dirichlet Forms and Markov Processes,” North Holland-Kodansha, 1980.Google Scholar
  4. [4]
    Harris, T.E., Brownian motions on the homeomorphisms of the plane, Ann. Probab. 9 (1981), pp. 232–254.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Kunita, H., “Stochastic Flows and S.D.E.’s,” Cambridge University Press, 1991.Google Scholar
  6. [6]
    Itô, K., Isotropic random currents, “Proc. Third Berkeley Symp. 2,” Univ. Calif. Press, Berkeley, 1956.Google Scholar
  7. [7]
    Ledrappier, F. and Young, L-S., Entropy formula for random transformations, Prob. Th. Rel. Fields 80 (1988), pp. 217–240.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Le Jan, Y., Flots de diffusion dansd, C. R. Acad Sci. Paris Serie I 294 (1982), pp. 697–699.MATHGoogle Scholar
  9. [9]
    Le Jan, Y., On isotropic Brownian motions, Zeit. für Wahrsch 70 (1985), pp. 609–620.MATHCrossRefGoogle Scholar
  10. [10]
    Le Jan, Y. and Watanabe, S., Stochastic flows of diffeomorphisms, “Proc. of the Taniguchi Symposium, (edited by K. Itô),” North Holland, 1984.Google Scholar
  11. [11]
    Le Jan, Y., Equilibre statistique pour les produits de difféomorphismes aléatoires indépendants, Ann. Inst. Henri Poincaré 23 (1987), pp. 111–120.MATHGoogle Scholar
  12. [12]
    Le Jan, Y., Propriétés asymptotiques des flots browniens isotropes, C. R. Acad Sci. Paris Serie I 309 (1989), pp. 63–65.MATHGoogle Scholar
  13. [13]
    Yaglom, A., Some classes of randonm fields in n-dimensional space, Theory Probab. Appl. 2 (1957), pp. 273–320.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Yves le Jan
    • 1
  1. 1.Laboratoire de Probabilités (CNRS)ParisFrance

Personalised recommendations