Skip to main content

Manifolds and Graphs with Mostly Positive Curvatures

  • Chapter
Stochastic Analysis and Applications

Part of the book series: Progress in Probability ((PRPR,volume 26))

Abstract

Bakry—Emery theory is used to define a ‘Ricci curvature’ for graphs. An upper bound for the spectral abcissa of the Laplacian of graphs with more than one end is given in terms of this quantity. This is similar to an existing result for manifolds, and the proof of that is also given.

Support was received from NATO Collaborative Research Grants Prog. 0232/87 and the EEC Stimulation Action Plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Airault, Subordination de processus dans le fibré tangent et formes harmoniques, C.R. Acad. Sci. Paris, Sér. A, 282 (June 14,1976), 1311–1314.

    MathSciNet  MATH  Google Scholar 

  2. D. Bakry and M. Emery, Diffusions hypercontractives. In Seminaire de Probabilités XIX, 1983–84, eds. J. Azéma and M. Yor, Lecture Notes in Math. 1123, Springer-Verlag, 19

    Google Scholar 

  3. D. Bakry and M. Emery, Propaganda forГ 2. In From Local Times to Global Geometry, Control and Physics, ed. K.D. Elworthy, Pitman Research Notes in Math. 150, Longman, 1986, pp. 39–

    Google Scholar 

  4. D. Bakry, Inégalités de Sobolev faible: un critère Г2, to appear in Seminaire de Probabilités, L.N.M. Springer, 1990.

    Google Scholar 

  5. P.H. Bérard, From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull. Amer. Math. Soc. 19 (1988), 371–406.

    Article  MathSciNet  MATH  Google Scholar 

  6. A.M. Berthier and B. Gaveau, Critère de convergence des fonctionnelles de Kac et applications en mécanique quantique et en géométrie, J. Funct. Anal. 29 (1978), 416–424.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms, Amer. J. Math. 98 (1976), 79–104.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Dodziuk and V.K. Patodi, Riemannian structures and triangulation of manifolds, J. Indian Math. Soc. 40 (1976), 1–52.

    MathSciNet  MATH  Google Scholar 

  9. J. Dodziuk and W.S. Kendall, Combinatorial Laplacians and isoperimetric inequality. In From Local Times to Global Geometry, Control and Physics, ed. K.D. Elworthy, Pitman Research Notes in Math. Series, 150, Longman, 1986, pp. 68–74.

    Google Scholar 

  10. H. Donnelly, The differential form spectrum of hyperbolic space, Manuscripta Math. 33 (1981), 365–385.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Donnelly and P. Li, Lower bounds for the eigenvalues of Riemannian manifolds, Michigan Math. J. 29 (1982), 149–161.

    Article  MathSciNet  MATH  Google Scholar 

  12. K.D. Elworthy, Stochastic differential equations on manifolds, London Mathematical Society Lecture Notes 70, Cambridge University Press, Cambridge, 1982.

    Google Scholar 

  13. K.D. Elworthy and S. Rosenberg, Generalized Bochner theorems and the spectrum of complete manifolds, Acta Appl. Math. 12 (1988), 1–33.

    MathSciNet  MATH  Google Scholar 

  14. K.D. Elworthy, Geometric aspects of diffusions on manifolds. In Ecole d’Eté de Probabilités de Saint-Flour XV-XVII, 1985–1987, ed. P.L. Hennequin, Lecture Notes in Math. 1362, Springer-Verlag, 1989, pp. 276–

    Google Scholar 

  15. K.D. Elworthy and S. Rosenberg, Spectral bounds and the shape of manifolds near infinity. In Proc. IX International Congress on Mathematical Physics, Swansea 1988, eds. B. Simon, I.M. Davies and A. Truman, Adam Hilger, Bristol & New York, 1989, pp. 369–373.

    Google Scholar 

  16. K.D. Elworthy and S. Rosenberg, Manifolds with wells of negative curvature, Invent. Math., 103 (1991), 471–495.

    Article  MathSciNet  MATH  Google Scholar 

  17. M.P. Gaffney, The heat equation method of Milgram and Rosenbloom for open Riemannian manifolds, Annals of Mathematics 60, No. 3 (1954), 458–466.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Gerl, Random walks on graphs with a strong isoperimetric property, Jour. Theor. Prob. 1, No. 2 (1988), 171–187.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Kodansha, Tokyo: North-Holland, Amsterdam, New York, Oxford, 1981.

    MATH  Google Scholar 

  20. K. Itô, The Brownian motion and tensor fields on a Riemannian manifold, Proc. Internat. Congr. Math. (Stockholm, 1962), Inst. Mittag-Leffler, 1963, pp. 536–539.

    Google Scholar 

  21. P. Malliavin, Formule de la moyenne pour les formes harmoniques, J. Funct. Anal. 17 (1974), 274–291.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Malliavin, Annulation de cohomologie et calcul des perturbations dans L 2, Bull. Sc. Math. 100 (1976), 331–336.

    MathSciNet  Google Scholar 

  23. A. Meritet, Théorème d’annulation pour la cohomologie absolue d’une variété Riemannienne abord, Bull. Sc. Math. 103 (1979), 379–400.

    MathSciNet  MATH  Google Scholar 

  24. J. Milnor, Morse Theory, Annals of Math. Studies 51, Princeton University Press, Princeton, 1963.

    Google Scholar 

  25. J. Vauthier, Théorèmes d’annulation et de finitude d’espace de1-formes harmoniques sur une variété de Riemann ouverte, Bull. Sc. Math. 103 (1979), 129–177.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elworthy, K.D. (1991). Manifolds and Graphs with Mostly Positive Curvatures. In: Cruzeiro, A.B., Zambrini, J.C. (eds) Stochastic Analysis and Applications. Progress in Probability, vol 26. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0447-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0447-3_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6764-5

  • Online ISBN: 978-1-4612-0447-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics