Conformally Invariant Random Fields and Processes—Old and New

  • S. Albeverio
  • K. Iwata
  • T. Kolsrud
Part of the Progress in Probability book series (PRPR, volume 26)


Introduction. In [7], based on earlier articles of which we refer to [1, 2, 3, 6], we studied the equation
$$\bar \partial A = F,$$
where Aand F are four-component random fields of four variables, and \(\bar \partial \) is a quaternionic version of the classical Cauchy-Riemann operator in C. Here F, the given source, is a white noise, not necessarily gaussian.


Brownian Motion Invariant Measure Random Field Conformally Invariant Riemann Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Albeverio, S. and Høegh-Krohn, R.: Construction of interacting local relativistic quantum fields in four space-time dimensions, Phys. Lett. B200, 108–114 (1988). Erratum in ibid. 202 p. 621 (1988).CrossRefGoogle Scholar
  2. [2]
    Albeverio, S., Høegh-Krohn, R., and Holden, H.: Markov cosurfaces and gauge fields. Acta Phys. Austr. Suppl. XXVI, 211–31 (1984).Google Scholar
  3. [3]
    Albeverio, S., Høegh-Krohn, R., Holden, H. and Kolsrud, T.: Representation and construction of multiplicative noise. J. Funct. Anal. 87 (1989), 250–272.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Albeverio, S., Høegh-Krohn, R., Holden, H. and Kolsrud, T.: A covariant Feynman-Kac formula for unitary bundles over Euclidean space. In G. DaPrato and L. Tubaro (Eds), Proc. Conf. Stochastic Partial Differential Equations II, Trento Feb. 1988. Springer Lect. Notes in Math. 1390, 1989.Google Scholar
  5. [5]
    Albeverio, S., Høegh-Krohn, R., Holden, H. and Kolsrud, T.: Construction of quantised Higgs-like fields in two dimensions. Phys. Lett. B. 222 (1989), 263–268.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Albeverio, S., Høegh-Krohn, R. and Iwata, K.: Covariant markovian random fields in four space-time dimensions with nonlinear electromagnetic interaction. In ‘Applications of self-adjoint extensions in quantum physics.’ Proc. Dubna Conference 1987, Editors P. Exner, P. Seba, Springer Lect. Notes in Phys. 324, 1989.Google Scholar
  7. [7]
    Albeverio, S., Iwata., K. and Kolsrud., T., Random Fields as Solutions of the Inhomogeneous Quaternionic Cauchy-Riemann Equation. I. Invariance and Analytic Continuation. Preprint Stockholm/BiBoS 1989. Commun. Math. Phys. 132, 555–580 (1990).MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Barut, A.O. and Raczka, R.: Theory of group representations and applications, 2nd ed. World Scientific, Singapore 1986.Google Scholar
  9. [9]
    Csink, L. and Øksendal, B. Stochastic harmonic morphisms: functions mapping the paths of one diffusion into the paths of another. Ann. Inst. Fourier (Grenoble) 33 (1983), 219–240.MATHCrossRefGoogle Scholar
  10. [10]
    Darling, R.W.R. Martingales in manifolds-Definitions, examples, and behaviour under maps. In: “Séminaire de Probabilités XVI, 1980/81. Supplément: Géométrie Différentielle Stochastique” (Eds J. Azéma and M. Yor), 217-236. Lect. Notes in Math. 921, Springer (1982).Google Scholar
  11. [11]
    Fuglede, B. Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Hida, T., Sur l’invariance protective pour les processus symétriques stables. C. R. Acad. Sc. Parist. 267 (1968), 821–823.MathSciNetMATHGoogle Scholar
  13. [13]
    Hida, T., Kubo, I., Nomoto, H. and Yosizawa. H., On projective invariance of Brownian motion. Pub. Res. Inst. Math. Sci. Kyoto Univ. 4 (1969), 595–609.MATHCrossRefGoogle Scholar
  14. [14]
    Hida, T., Stationary stochastic processes. Princeton Lecture Notes Series in Math., 1970.Google Scholar
  15. [15]
    Hida, T., Lee, K.-S. and Lee, S.-S., Conformai invariance of white noise. Nagoya Math. J. 98 (1985), 87–98.MathSciNetMATHGoogle Scholar
  16. [16]
    Ikeda, N. and Watanabe, S. Stochastic differential equations and diffusion processes. North-Holland/Kodansha, 1981.Google Scholar
  17. [17]
    Kolsrud, T. On maps preserving geometrical semimartingale diffusions. Manuscript 1986/87/88/89/?Google Scholar
  18. [18]
    Mackey, G.W., Unitary group representations in physics, probability, and number theory. Mathematical Lecture Notes Series, Benjamin, 1978.Google Scholar
  19. [19]
    McKean, H.P. Stochastic integrals. Academic Press, 1969.Google Scholar
  20. [20]
    Meyer, P.-A. A differential geometric formalism for the Itô calculus. In: “Stochastic Integrals, Proceedings, LMS Durham Symposium, 1980” (Ed D. Williams), 256–270. Lect. Notes in Math. 851, Springer, 1981.Google Scholar
  21. [21]
    Oksendal, B. Finely harmonic morphisms, Brownian path preserving functions and conformai martingales. Inventiones Math. 75 (1984), 179–187.MathSciNetCrossRefGoogle Scholar
  22. [22]
    Osipov, E. Two-dimensional random fields as solutions of stochastic differential equations. Bochum preprint 1989.Google Scholar
  23. [23]
    Stroock, D., On the growth of certain stochastic integrals. Z. Warsch. verw. Geb., 18 (1971), 340–344.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Tamura, H. Nonlinear electromagnetic fields confine charges. Kanazawa preprint 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York  1991

Authors and Affiliations

  • S. Albeverio
    • 1
    • 3
    • 4
    • 5
  • K. Iwata
    • 1
    • 3
  • T. Kolsrud
    • 2
  1. 1.Ruhr-Universität BochumGermany
  2. 2.Kungliga Tekniska HögskolanStockholmSweden
  3. 3.Bochum-Essen-DüsseldorfGermany
  4. 4.BiBo-S Research CentreUniversität BielefeldGermany
  5. 5.CERFIMLocarnoSwitzerland

Personalised recommendations