Skip to main content

Exemples d’ensembles de Points en Position Uniforme

  • Chapter
Effective Methods in Algebraic Geometry

Part of the book series: Progress in Mathematics ((PM,volume 94))

Résumé

Un ensemble E de n points d’un espace affine, dont les équations forment un idéal de polynômes de colongueur n, est en position uniforme si pour tout sous-ensemble de n′ points E′ de E la fonction de Hilbert de E′ ne dépend que de n′.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bourbaki, “Algèbre,” ch 5, Hermann, 1981.

    Google Scholar 

  2. J. Briançon, A. Galligo, Déformations distinguées de points, Astérisque n. 7 et 8 (1973), 129–138.

    Google Scholar 

  3. J. Brun, A. Hirschowitz, Le problème de Brill-Noether pour les idéaux de P2, Ann. Sc. E.N.S. 20 (1987), 171–200.

    MathSciNet  MATH  Google Scholar 

  4. B. Buchberger, Groebner bases: An algorithmic method in Polynomial Ideal Theory, in “Multidimensional System Theory,” D.Reidel Publishing Co., 1985, pp. 184–232.

    Google Scholar 

  5. M.A. Coppo, “Familles maximales de points surabondants dans la plan projectif,” Thèse, 1989. Université de Nice

    Google Scholar 

  6. E. Davis, Complete intersectionsrevisited, Rend. Sem. Mat. Torino 43, 2 (1985), 333–353.

    Google Scholar 

  7. Dubreil, Sur quelques propriétés des systèmes de points dans le plan et des courbes gauches algébriques, Bull. Soc. Math. France 61 (1933), 258–283.

    MathSciNet  Google Scholar 

  8. J. C. Faugère, P. Gianni, D. Lazard, T. Mora, Efficient Computation of Zero-dimensional Gröbner Bases by Change of Ordering, (submitted), J. Symb. Comp. (1989). Technical Report LITP 89-52

    Google Scholar 

  9. O. Forster, “Lectures on Riemann Surfaces,” Graduate Texts in Math. 81, Spinger, 1981.

    Google Scholar 

  10. A. Galligo, “Algorithmes de calcul de bases standard,” Pre-print Université de Nice, 1983.

    Google Scholar 

  11. A. Galligo, A propos du théorème de préparation de Weierstrass, in “Séminaire Norguet,” Springer Lect. Notes in Math. vol 409, 1974, pp. 543–579.

    MathSciNet  Google Scholar 

  12. A. Galligo, J. Grimm, L. Pottier, The design of SISYPHE, in “DISCO 1990,” Springer Lect.N. in C.S. 429, 1990, pp. 30–39.

    Google Scholar 

  13. A. Galligo, L. Pottier, C. Traverso, GECD and standard basis completion algorithm, in “ISSAC88,” Springer Lect.N. in C.S. vol 358, 1989, pp. 162–176.

    MathSciNet  Google Scholar 

  14. A. V. Geramita, J. C. Migliore, “Hyperplane sections of smooth curves,” Queen’s Papers in Pure and Applied Math. vol 80, 1988.

    Google Scholar 

  15. L. Gruson, Ch. Peskine, “Genres de courbes de l’espace projectif,” Springer Lect. Notes in Math. 687, 1978.

    Google Scholar 

  16. J. Harris, The genus of space curves, Math. Ann. 249 (1980), 191–204.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Heintz, On polynomials with symmetric Galois group which are easy to compute, T. C. S. 47 (1986), 99–105.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Lazard, Ideal basis and Primary decomposition: case of two variables, J. S. C 1 (1985), 261–270.

    MathSciNet  MATH  Google Scholar 

  19. R. Maggioni, A. Ragusa, The hilbert function of generic plane sections of curves in P 3, Invent. Math. 91 (1988), 253–255.

    Article  MathSciNet  MATH  Google Scholar 

  20. Matzat, “Konstruktive Galoistheorie,” Springer Lect.N. in Math, 1987.

    Google Scholar 

  21. M. Moeller, T. Mora, The computation of the Hilbert function, in “Proc. Eurocal’ 83,” Springer Lect Notes in C.S., 1983, pp. 157-167.

    Google Scholar 

  22. L. Robbiano (ed.), “Computational aspect of commutative Algebra,” Academic Press, 1989.

    Google Scholar 

  23. T. Sauer, The number of equations defining points in general position, Pacific J. of Math. 120 (1985), 199–213.

    Article  MathSciNet  MATH  Google Scholar 

  24. C Traverso, Groebner trace algorithms, in “Proceedings ISSAC 88,” Springer Lect. Notes in CS. vol 358, 1989, pp. 125–138.

    MathSciNet  Google Scholar 

  25. B.L. van der Wærden, “Algebra,” volume 1, F. Ungar, 1970.

    Google Scholar 

  26. B.L. van der Waerden, Zur Algebraischen Geometrie, V, Math. Ann. 109 (1934), 128–133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Galligo, A. (1991). Exemples d’ensembles de Points en Position Uniforme. In: Mora, T., Traverso, C. (eds) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol 94. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0441-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0441-1_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6761-4

  • Online ISBN: 978-1-4612-0441-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics