Skip to main content

Duality methods for the membership problem

  • Chapter
Effective Methods in Algebraic Geometry

Part of the book series: Progress in Mathematics ((PM,volume 94))

Abstract

The classical problem of deciding membership to arbitrary polynomial ideals is EXPSPACE complete. Moreover, the problem of finding a representation of a polynomial by generators of a given ideal may involve doubly exponential (in the number of variables) degrees ([16]). The same difficulty arises when computing Gröebner bases of arbitrary polynomial ideals ([11]). This means that all known techniques to decide membership and to find representations of polynomials with respect to a given ideal lead to doubly exponential (sequential time) worst case complexities. However, if the geometry of the underlying algebraic variety is particularly simple, e.g. if the given ideal is zero dimensional or complete intersection, algorithms of considerably lower complexity can be found (see e.g. [7], [9]). The improvements are due to recent progress concerning affine versions of the effective Nullstellensatz (compare [18] and the references given there).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeniol, B., Résidus et Effectivité, Preprint (1983).

    Google Scholar 

  2. Berenstein, C., Yger, A., Bounds for the degrees in the division problem, Preprint Univ. of Maryland (1989).

    Google Scholar 

  3. Brownawell, W.D., Bounds for the degrees in the Nullstellensatz, Annals of Math. 126 (1987), 577–591.

    Article  MathSciNet  MATH  Google Scholar 

  4. Caniglia, L., Galligo, A., Heintz, J., Some new effectivity bounds in Computational Geometry, in “Applied Algebra, Algebraic Algorithms and Error Correcting Codes. Proc. 6th Int’l Conf., Rome 1988,” (Ed. T. Mora), Springer LN Comput. Sci. 357, 1989, pp. 131–151.

    Google Scholar 

  5. Chistov, A.L., Grigor’ev, D.Yu., Subexponential time solving systems of algebraic equations, LOMI preprints E-9-83 E-10-83, Leningrad (1983).

    Google Scholar 

  6. Coleff, N., Herrera, M., “Les Courants Residueis Associés à une Forme Meromorphe,” Springer LN Math. 633, 1978.

    Google Scholar 

  7. Dickenstein, A., Fitchas, N., Giusti, M., Sessa, C., The membership problem for unmixed polynomial ideals is solvable in single exponential time, in “Discrete Applied Algebra, Proc. AAECC-7, Toulouse 1989” (to appear).

    Google Scholar 

  8. Dickenstein, A., Sessa, C., Canonical Representatives in Moderate Cohomology, Invent. Math. 80 (1985), 417–434.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dickenstein, A., Sessa, C., An Effective Residual Criterion for the Membership Problem in C[z 1,…, z n], J. Pure Appl. Algebra (to appear).

    Google Scholar 

  10. von zur Gathen, J., Parallel arithmetic computations. A survey, in “Proc. 13th Symp. MFCS 1986,” Springer LN Comput. Sci. 233, 1986, pp. 93–112.

    Google Scholar 

  11. Giusti, M., Complexity of standard bases in projective dimension zero, Preprint Ecole Polytechnique Paris (1987).

    Google Scholar 

  12. Griffiths, P., Harris, J., “Principles of Algebraic Geometry,” John Wiley & Sons, 1978.

    Google Scholar 

  13. Hartshorne, R., “Residues and Duality,” Springer L.N. Math. 20, 1966.

    Google Scholar 

  14. Lazard, D., Algèbre linéaire sur K[x 1,…, x n]_et élimination, Bull. Soc. Math. France 105 (1977), 165–190.

    MathSciNet  MATH  Google Scholar 

  15. Lipman, J., Dualizing sheaves, differentials and residues on algebraic varieties, Astérisque 117 (1984).

    Google Scholar 

  16. Mayr, E., Meyer, A., The complexity of the word problem for commutative semigroups and polynomial ideals, Advances in Math. 46 (1982), 305–329.

    Article  MathSciNet  MATH  Google Scholar 

  17. Serre, J.P., Géometrie Algébrique et Géometrie Analytique, (G.A.G.A.), Annales de l’Institut Fourier VI (1956), 1–42.

    Google Scholar 

  18. Teissier, B., Résultats récents d’algèbre commutative effective, in “Séminaire Bourbaki, 42ème année, 1989-90,” n° 718, pp. 1–19.

    Google Scholar 

  19. Zariski, O., Samuel, P., “Commutative Algebra,” Vol. 1, Van Nostrand, New York, 1958.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dickenstein, A., Sessa, C. (1991). Duality methods for the membership problem. In: Mora, T., Traverso, C. (eds) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol 94. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0441-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0441-1_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6761-4

  • Online ISBN: 978-1-4612-0441-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics