Skip to main content

Effective real Nullstellensatz and variants

  • Chapter
Effective Methods in Algebraic Geometry

Part of the book series: Progress in Mathematics ((PM,volume 94))

Abstract

We give a constructive proof of the real Nullstellensatz. So we obtain, for every ordered field K, a uniformly primitive recursive algorithm that computes, for the input “a system of generalized signs conditions (gsc) on polynomials of K[X 1, X 2, …, X n ] impossible to satisfy in the real closure of K, an algebraic identity that makes this impossibility evident. The main idea is to give an “algebraic identity version” of universal and existential axioms of the theory of real closed fields, and of the simplest deduction rules of this theory (as Modus Ponens). We apply this idea to the Hörmander algorithm, which is the conceptually simplest test for the impossibility of a gsc system in the real closure of an ordered field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bochnak J., Coste M., Roy M.-F., “Geometrie Algébrique reelle,” A series of Modem Surveys in Mathematics 11, Springer-Verlag, 1987.

    Google Scholar 

  2. Dubois, D. W., A nullstellensatz for ordered fields, Arkiv for Mat. 8 (1969), 111–114, Stockholm.

    Article  Google Scholar 

  3. Efroymson, G., Local reality on algebraic varieties, J. of Algebra 29 (1974), 113–142.

    Article  MathSciNet  Google Scholar 

  4. Krivine, J. L., Anneaux préordonnés, Journal d’analyse mathématique 12 (1964), 307–326.

    Article  MathSciNet  MATH  Google Scholar 

  5. Lombardi H., Roy M.-F., Théorie constructive élémentaire des corps ordonnés. English version in these proceedings

    Google Scholar 

  6. Lombardi H., Théorème des zéros réel effectif et variantes, Publications Mathématiques de Besançon 88-89. Théorie des nombres. Fascicule 1.

    Google Scholar 

  7. Mines R., Richman F., Ruitenburg W., “A Course in Constructive Algebra,” Universitext, Springer-Verlag, 1988.

    Google Scholar 

  8. Risler, J.-J., Une caractérisation des idéaux des variétés algébriques réelles, C.R.A.S. Paris, série A 271 (1970), 1171–1173.

    MathSciNet  MATH  Google Scholar 

  9. Stengle, G., A Nullstellensatz and a Positivestellensatz in semialgebraic geometry, Math. Ann. 207 (1974), 87–97.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lombardi, H. (1991). Effective real Nullstellensatz and variants. In: Mora, T., Traverso, C. (eds) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol 94. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0441-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0441-1_18

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6761-4

  • Online ISBN: 978-1-4612-0441-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics