Abstract
We give a constructive proof of the real Nullstellensatz. So we obtain, for every ordered field K, a uniformly primitive recursive algorithm that computes, for the input “a system of generalized signs conditions (gsc) on polynomials of K[X 1, X 2, …, X n ] impossible to satisfy in the real closure of K, an algebraic identity that makes this impossibility evident. The main idea is to give an “algebraic identity version” of universal and existential axioms of the theory of real closed fields, and of the simplest deduction rules of this theory (as Modus Ponens). We apply this idea to the Hörmander algorithm, which is the conceptually simplest test for the impossibility of a gsc system in the real closure of an ordered field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bochnak J., Coste M., Roy M.-F., “Geometrie Algébrique reelle,” A series of Modem Surveys in Mathematics 11, Springer-Verlag, 1987.
Dubois, D. W., A nullstellensatz for ordered fields, Arkiv for Mat. 8 (1969), 111–114, Stockholm.
Efroymson, G., Local reality on algebraic varieties, J. of Algebra 29 (1974), 113–142.
Krivine, J. L., Anneaux préordonnés, Journal d’analyse mathématique 12 (1964), 307–326.
Lombardi H., Roy M.-F., Théorie constructive élémentaire des corps ordonnés. English version in these proceedings
Lombardi H., Théorème des zéros réel effectif et variantes, Publications Mathématiques de Besançon 88-89. Théorie des nombres. Fascicule 1.
Mines R., Richman F., Ruitenburg W., “A Course in Constructive Algebra,” Universitext, Springer-Verlag, 1988.
Risler, J.-J., Une caractérisation des idéaux des variétés algébriques réelles, C.R.A.S. Paris, série A 271 (1970), 1171–1173.
Stengle, G., A Nullstellensatz and a Positivestellensatz in semialgebraic geometry, Math. Ann. 207 (1974), 87–97.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1991 Springer Science+Business Media New York
About this chapter
Cite this chapter
Lombardi, H. (1991). Effective real Nullstellensatz and variants. In: Mora, T., Traverso, C. (eds) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol 94. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0441-1_18
Download citation
DOI: https://doi.org/10.1007/978-1-4612-0441-1_18
Publisher Name: Birkhäuser, Boston, MA
Print ISBN: 978-1-4612-6761-4
Online ISBN: 978-1-4612-0441-1
eBook Packages: Springer Book Archive