The Disturbance Decoupling Problem for Systems Over a Principal Ideal Domain

  • A. M. Perdon
  • G. Conte
Part of the Progress in Systems and Control Theory book series (PSCT, volume 7)


The use of geometric methods in the study of disturbance decoupling problems for systems over a ring provides in general only necessary conditions for the existence of solutions. In this paper the authors develop a geometric procedure which allows to test the existence of solutions to problems of the above kind and to construct one of them, if any, for injective systems with coefficients in a principal ideal domain.


Invariant Subspace Geometric Approach Linear Dynamical System Principal Ideal Domain Feedback Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Basile and G. Marro, Controlled and Conditioned Invariant Subspace in Linear System Theory, J. O.T. A. 3 (1969)Google Scholar
  2. [2]
    G. Conte and A.M. Perdon, Systems over Principal Ideal Domains. A Polinomial Model Approach, SIAM J. Control Opt. 20 (1982)Google Scholar
  3. [3]
    M.L.J. Hautus, Controlled Invariance in Systems over rings, Springer Lecture Notes in Control and Info. Sci. 39 (1982)Google Scholar
  4. [4]
    E. Kamen, Lectures on Algebraic System Theory. Linear Systems over Rings, NASA Contractor Report 3016 (1976)Google Scholar
  5. [5]
    E. Sontag, Linear Systems over Rings : a Survey, Ricerche di Automatica 7 (1976)Google Scholar
  6. [6]
    E. Sontag, Linear Systems over Rings : a (Partial) Update Survey, Proc. IFAC/81, Kyoto, (1981)Google Scholar
  7. [7]
    M. Wohnam, “Linear multivariable control : a geometric approach”, 3rd Ed. Springer Verlag, 1985Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. M. Perdon
    • 1
  • G. Conte
    • 2
  1. 1.Dipertimento Metodi e Modelli MatematiciUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di MatematicaUniversità di GenovaGenovaItaly

Personalised recommendations