The Disturbance Decoupling Problem for Systems Over a Principal Ideal Domain

  • A. M. Perdon
  • G. Conte
Part of the Progress in Systems and Control Theory book series (PSCT, volume 7)


The use of geometric methods in the study of disturbance decoupling problems for systems over a ring provides in general only necessary conditions for the existence of solutions. In this paper the authors develop a geometric procedure which allows to test the existence of solutions to problems of the above kind and to construct one of them, if any, for injective systems with coefficients in a principal ideal domain.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Basile and G. Marro, Controlled and Conditioned Invariant Subspace in Linear System Theory, J. O.T. A. 3 (1969)Google Scholar
  2. [2]
    G. Conte and A.M. Perdon, Systems over Principal Ideal Domains. A Polinomial Model Approach, SIAM J. Control Opt. 20 (1982)Google Scholar
  3. [3]
    M.L.J. Hautus, Controlled Invariance in Systems over rings, Springer Lecture Notes in Control and Info. Sci. 39 (1982)Google Scholar
  4. [4]
    E. Kamen, Lectures on Algebraic System Theory. Linear Systems over Rings, NASA Contractor Report 3016 (1976)Google Scholar
  5. [5]
    E. Sontag, Linear Systems over Rings : a Survey, Ricerche di Automatica 7 (1976)Google Scholar
  6. [6]
    E. Sontag, Linear Systems over Rings : a (Partial) Update Survey, Proc. IFAC/81, Kyoto, (1981)Google Scholar
  7. [7]
    M. Wohnam, “Linear multivariable control : a geometric approach”, 3rd Ed. Springer Verlag, 1985Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. M. Perdon
    • 1
  • G. Conte
    • 2
  1. 1.Dipertimento Metodi e Modelli MatematiciUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di MatematicaUniversità di GenovaGenovaItaly

Personalised recommendations