Skip to main content

Morphine and Liver Damage

  • Chapter
Liver Pathology and Alcohol

Part of the book series: Drug and Alcohol Abuse Reviews ((DAAR,volume 2))

  • 174 Accesses

Abstract

Recurring reports of a high incidence of liver dysfunction in narcotic addicts have led several investigators to examine the possibility that narcotic drugs, such as heroin and morphine, may be hepatotoxic. The overwhelming consensus is that most of the liver damage encountered among narcotic addicts is attributable to viral hepatitis contracted by the use of dirty needles. This conclusion is supported by the lack of hepatotoxicity in federal-prisoner patients who were injected with large amounts of sterile morphine under controlled conditions. 1 There is also no evidence of increased hepatotoxicity in addicts maintained on oral methadone. 2 Conversely, there is a correlation between the duration of exposure to hypodermic equipment and the cumulative incidence of liver disease.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. W. Gorodetzky, J. D. Sapira, D. R. Jasinski, and W. R. Martin (1968) Liver disease in narcotic addicts. I. The role of the drug. Clin. Pharmacol. Ther. 9, 720–724.

    CAS  Google Scholar 

  2. M. J. Kreek, L. Docks, S. Kane, J. Knobler, and R. Martin (1972) Long-term methadone maintenance therapy: Effects liver function. Ann. Intern. Med. 77(4), 598–602.

    PubMed  CAS  Google Scholar 

  3. J. D. Sapira, D. R. Jasinski, and C. W. Gorodetzky (1968) Liver disease in narcotic addicts. II. The role of the needle. Clin. Pharmacol. Then 9,725–739.

    CAS  Google Scholar 

  4. F. P. Brooks, G. A. Deneau, H. P. Potter, Jr., J. G. Reinhold, and R. F. Norris (1963) Liver function tests in morphine-addicted and in nonaddicted rhesus monkeys. Gastroenterology 44,287–290.

    PubMed  CAS  Google Scholar 

  5. J. Axelrod (1956) Possible mechanism of tolerance to narcotic drugs. Science 24,263–264.

    Article  Google Scholar 

  6. J. Cochin and J. Axelrod (1959) Biochemical and pharmacological changes in the rat following chronic administration of morphine, nalorphine and normorphine. J. PharmacoL 125,105–110.

    CAS  Google Scholar 

  7. D. H. Clouet and M. Ratner (1964) The effect of altering liver microsomal Ndemethylase activity on the development of tolerance to morphine in rats. J. Pharmacol. Exp. Ther. 144,362–372.

    CAS  Google Scholar 

  8. R. Kato and J. R. Gillette (1965) Sex differences in the effects of abnormal physiological states on the metabolism of drugs by rat liver microsomes. J. Pharmacol. Exp. Ther. 150,285–291.

    PubMed  CAS  Google Scholar 

  9. N. E. Sladek, M. D. Chaplin, and G. J. Mannering (1974) Sex-dependent differences in drug metabolism in the rat. IV. Effect of morphine administration. Drug Metab. Dispos. 2,293–300.

    CAS  Google Scholar 

  10. D. Gurantz and M. A. Coneia (1981) Morphine-mediated effects on rat hepatic heme and cytochrome P-450 in vivo. Biochem. Pharmacol. 30,1529–1536.

    CAS  Google Scholar 

  11. R. Kato, K. I. Onoda, and A. Takanaka (1971) Species differences in the effect of morphine administration or adrenalectomy on the substrate interactions with cytochrome P-450 and drug oxidations by liver microsomes. Biochem. Pharmacol. 20,1093–1089.

    CAS  Google Scholar 

  12. A. Hurwitz, H. R. Fischer, J. D. Inns, S. Ronsse, and Z. Ben-Zvi (1985) Opioid effects on hepatic disposition of dyes in mice. J. PharmacoL Exp. Ther. 232, 617–623.

    PubMed  CAS  Google Scholar 

  13. A. Hurwitz (1981) Narcotic effects on phenol red disposition in mice. J. Pharmacol. Exp. Ther. 216,90–94.

    PubMed  CAS  Google Scholar 

  14. A. Thureson-Klein, J. W. Yang, and I. K. Ho (1978) Lipid accumulation in mouse hepatocytes after morphine exposure. Experientia 34,773–774.

    Article  PubMed  CAS  Google Scholar 

  15. Y H. Chang and I. K. Ho (1979) Effects of acute and continuous morphine administration on serum glutamate-oxalacetate transaminase and glutamate-pyruvate transaminase activities in the mouse. Biochem. Pharmacol. 28,1373–1377.

    CAS  Google Scholar 

  16. W. P. Needham, L. Shuster, G. C. Kanel, and M. L. Thompson (1981) Liver damage from narcotics in mice. Toxicol. AppL PharmacoL 58,157–170.

    Article  CAS  Google Scholar 

  17. A. Baran, L. Shuster, B. E. Eleftheriou, and D. W. Bailey (1975) Opiate receptors in mice: Genetic differences. Life Sci. 17, 633–640.

    Article  PubMed  CAS  Google Scholar 

  18. T. Lehman and G. R. Petersen (1978) Naloxone —reversible analgesic action of SKF-525A in mice. PsychopharmacoL 59, 305–308.

    Article  CAS  Google Scholar 

  19. E. C. Dick, S. M. Greenberg, J. F. Herndon, M. Jones, and E. J. Van Loon (1960) Hypocholesteremic effects of 2-diethylaminoethyl 2, 2-diphenylvalyrate (SKF-525A) in the dog. Proc. Soc. Exp. BioL Med. 104, 523–526.

    PubMed  CAS  Google Scholar 

  20. M. L. Thompson, L. Shuster, and K. Shaw (1979) Cocaine-induced hepatic necrosis in mice. The role of cocaine metabolism. Biochem. Pharmacol. 28, 2389–2395.

    CAS  Google Scholar 

  21. A. R. Boobis, D. J. Fawthrop, and D. S. Davies (1989) Mechanisms of cell death. Trends PharmacoL Sci. 10,275–280.

    Article  PubMed  CAS  Google Scholar 

  22. R. C. James, D. R. Goodman, and R. D. Harbison (1982) Hepatic glutathione and hepatotoxicity: Changes induced by selected narcotics. J. PharmacoL Exp. Ther. 221, 708–714.

    PubMed  CAS  Google Scholar 

  23. M. A. Correia, J. S. Wong, and E. Soliven (1984) Morphine metabolism revisited: I. Metabolic activation of morphine to a reactive species in rats. Chem. BioL Interact. 49, 255–268.

    Article  PubMed  CAS  Google Scholar 

  24. M. A. Correia, G. Krowech, R Caldera-Munoz, S. L. Yee, K. Straub, and N. Castagnoli (1984) Morphine metabolism revisited. II. Isolation and chemical characterization of a glutathionylmorphine adduct from rat liver microsomal preparations. Chem. BioL Interact. 51,13–24.

    Article  PubMed  CAS  Google Scholar 

  25. G. Krowech, P. S. Caldera-Munoz, K. Straub, N. Castagnoli, and M. A. Correia (1986) Morphine metabolism revisited. III. Confirmation of a novel metabolic pathway. Chem. Biol. Interact. 58, 29–40.

    Article  PubMed  CAS  Google Scholar 

  26. K. Nagamatsu, Y. Kido, T. Terao, T. Ishida, and S. Told (1982) Protective effect of sulfhydryl compounds on acute toxicity of morphinone. Life Sci. 30, 1121–1127.

    Article  PubMed  CAS  Google Scholar 

  27. K. Nagamatsu, Y. Kido, T. Terao, T. Ishida, and S. Told (1983) Studies on the mechanism of covalent binding of morphine metabolites to proteins in mouse. Drug Metab. Dispos. 11(3), 190–194.

    CAS  Google Scholar 

  28. S. Yamano, E. Kageura, T. Ishida, and S. Toki (1985) Purification and characterization of guinea pig liver morphine 6-dehydrogenase. J. BioL Chem. 260, 5259–5264.

    PubMed  CAS  Google Scholar 

  29. S. Yamano, F. Nishida, and S. Told (1986) Guinea-pig liver morphine 6-dehydrogenase as a naloxone reductase. Biochem. Pharmacol. 35(23), 4321–4326.

    CAS  Google Scholar 

  30. R. L. Feasted and N. R. Bachur (1980) Mammalian carbonyl reductases. Drug Metab. Rev. 11,1–60.

    Google Scholar 

  31. K. Nagamatsu, Y. Ohno, H. Ikebuchi, A. Takahashi, T. Terao, and A. Takanaka (1986) Morphine metabolism in isolated rat hepatocytes and its implications for hepatotoxicity. Biochem. Pharmacol. 35, 3543–3548.

    CAS  Google Scholar 

  32. K. Nagamatsu, T. Terao, and S. Told (1985) In vitro formation of codeinone from codeine by rat or guinea pig liver homogenate and its acute toxicity in mice. Biochem. Pharmacol. 34, 3143–3146.

    CAS  Google Scholar 

  33. K. Nagamatsu, K. Inoue, T. Terao, and S. Toki (1986) Effects of glutathione and phenobarbital on the toxicity of codeinone. Biochem. Pharmacol. 35, 1675–1678.

    CAS  Google Scholar 

  34. S. P. Ellington and G. M. Rosen (1987) Codeine-mediated hepatotoxicity in isolated rat hepatocytes. Toxicol. AppL Pharmacol. 90,156–165.

    Article  CAS  Google Scholar 

  35. R. C. James, W. D. Wessinger, S. M. Roberts, G. C. Millner, and M. G. Paule (1988) Centrally mediated opioid induced depression of hepatic glutathione: Effects of intracerebroventricular administration of mu, kappa, sigma and delta agonists. Toxicology 51, 267–279.

    Article  PubMed  CAS  Google Scholar 

  36. N. P. Skoulis, R. C. James, R. D. Harbison, and S. M. Roberts (1989) Depression of hepatic glutathione by opioid analgesic drugs in mice. Toxicol. Appl. Pharmacol. 99,139–147.

    CAS  Google Scholar 

  37. N. P. Skoulis, R. C. James, R. D. Harbison, and S. M. Roberts (1989) Perturbation of glutathione by a central action of morphine. Toxicology 57, 287–302.

    Article  PubMed  CAS  Google Scholar 

  38. S. M. Roberts, N. P. Skoulis, and R. C. James (1987) A centrally-mediated effect of morphine to diminish hepatocellular glutathione. Biochem. Pharmacol. 36, 3001–3005.

    CAS  Google Scholar 

  39. R. C. James, S. M. Roberts, and R. D. Harbison (1983) The perturbation of hepatic glutathione by ore adrenergic agonists. Fundam. Appt. Toxicol. 3,303–308.

    Article  CAS  Google Scholar 

  40. M. Vassalle (1961) Role of catecholamine release in morphine hyperglycemia. Am. J. Physiol. 200,530–534.

    PubMed  CAS  Google Scholar 

  41. L Shuster, C. A. Garhart, J. Powers, Y. Grunfeld, and G. Kanel (1988) Hepatotoxicity of Cocaine, in Mechanisms of Cocaine Abuse and Toxicity. NIDA Research Monograph 88. D. Clouet, K. Asghar, R. Brown, eds. National Institute on Drug Abuse, Rockville, MD, pp. 250–275.

    Google Scholar 

  42. R. R. Brooks and S. F. Pong (1981) Effects of fasting, body weight, methycellulose, and carboxymethycellulose on hepatic glutathione levels in mice and hamsters. Biochem. Pharmacol. 30, 589–594.

    CAS  Google Scholar 

  43. R. C. James, M. A. Schiefer, S. M. Roberts, and R. D. Harbison (1987) Antagonism of cocaine-induced hepatotoxicity by the alpha adrenergic antagonists phentolamine and yohimbine. J. Pharmacol. Exp. Ther. 242, 726–732.

    PubMed  CAS  Google Scholar 

  44. H. Sies and R Graf (1985) Hepatic thiol and glutathione efflux under the influence of vasopressin, phenylephrine and adrenaline. Biochem. J. 226, 545–549.

    PubMed  CAS  Google Scholar 

  45. G. Y. Sun, D. W. Hallett, and I. K. Ho (1978) Effect of morphine on hepatic lipid metabolism. Biochem. Pharmacol. 27,1779–1782.

    CAS  Google Scholar 

  46. R. G. Lamb and W. L. Dewey (1981) Effect of morphine exposure on mouse liver triglyceride formation. J. Pharmacol. Exp. Ther. 216,496–499.

    PubMed  CAS  Google Scholar 

  47. H. P. Glenny and D. N. Brindley (1978) The effects of cortisol, corticotropin and thyroxine on the synthesis of glycerolipids and on the phosphatidate phosphohydrolase activity in rat liver. Biochem. J. 176, 777–784.

    PubMed  CAS  Google Scholar 

  48. J. P. Heybach and J. Vemikos (1981) Naloxone inhibits and morphine potentiates the adrenal steroidogenic response to ACTH. Eur. J. Pharmacol. 75,1–6.

    Article  PubMed  CAS  Google Scholar 

  49. P. D. Kelly and J. R. Traynor (1981) Effects of narcotic analgesics on lipase activity in vitro. BE J. Pharmacol. 73, 301P–302P.

    Google Scholar 

  50. M. A. Lehtonen, M. J. Savolainen, and I. E. Hassinen (1979) Hormonal regulation of hepatic soluble phosphatidate phosphohydrolase. Induction by cortisol in vivo and in isolated perfused rat liver. FEBS Leu. 99,162–166.

    Article  CAS  Google Scholar 

  51. V. Amzel and T. A. Van Der Hoeven (1979) Morphine-induced depression of the hepatic microsomal drug-metabolizing enzyme—effect on the lipid component. Biochem. Pharmacol. 29,658–661.

    Google Scholar 

  52. M. J. Coon and D. R. Koop (1987) Alcohol-inducible cytochrome P-450 (P450 ALC). Arch. Toxicol. 60,16–21.

    CAS  Google Scholar 

  53. B. H. Lauterburg, Y. Vaishnav, W. G. Stillwell, and J. R. Mitchell (1980) The effects of age and glutathione depletion on hepatic glutathione turnover in vivo determined by acetaminophen probe analysis. J. Pharmacol. Exp. Ther. 213, 54–58.

    PubMed  CAS  Google Scholar 

  54. L. Shuster, A. Bates, and C. A. Hirsch (1978) A sensitive radiochemical assay for serum glutamic-oxaloacetic transaminase. Anal. Biochem. 86, 648–654.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shuster, L. (1991). Morphine and Liver Damage. In: Watson, R.R. (eds) Liver Pathology and Alcohol. Drug and Alcohol Abuse Reviews, vol 2. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0421-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0421-3_23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6755-3

  • Online ISBN: 978-1-4612-0421-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics