Caffeine Metabolism

Disposition in Liver Disease and Hepatic-Function Testing
  • Charles P. Denaro
  • Neal L. Benowitz
Part of the Drug and Alcohol Abuse Reviews book series (DAAR, volume 2)


Caffeine is probably the most commonly consumed drug in the world. Caffeine is 1,3,7-trimethylxanthine (137X) and is metabolized by N-demethylation to dimethylxanthines (Fig. 1). All these compounds are pharmacologically active.1, 2 This chapter will describe the metabolism of caffeine and the changes in caffeine metabolism that occurin people with liver disease. We will also examine the use of caffeine to assess cytochrome P-450 function, acetylator status, and liver function in general.


Cirrhotic Patient Breath Test Slow Acetylators Metabolite Ratio Caffeine Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.J. Arnaud (1987) The pharmacology of caffeine. Prog. Drug Res., 31, 273–313.PubMedGoogle Scholar
  2. 2.
    C.G.A. Persson, J.A. Karlsson, and I. Erjefalt (1982) Differentiation between bronchodilation and universal adenosine antagonism among xanthine derivatives. Life Sci., 30, 2181–2189.PubMedCrossRefGoogle Scholar
  3. 3.
    J. Blanchard and S.J.A. Sawers (1983) The absolute bioavailability of caffeine in man. Eur. J. Clin. Pharmacol., 24, 93–98.PubMedCrossRefGoogle Scholar
  4. 4.
    M. Bonati, R. Latini, E Galletti, J.F. Young, G. Tognoni, and S. Garatini (1982) Caffeine disposition after oral doses. Clin. Pharmacol. Ther., 32,98–106.PubMedCrossRefGoogle Scholar
  5. 5.
    M.J. Arnaud and C. Welsch (1981) Theophylline and caffeine metabolism in man, in Methods in Clinical Pharmacology, vol. 3. N. Reitbrock, G.B. Woodcook, and A.H. Staib, eds. Braunschweig/Wiesbaden, Vieweg, pp. 135–148.Google Scholar
  6. 6.
    D.D. Tang-Liu, R.L. Williams, and S. Riegelman (1983) Disposition of caffeine and its metabolites in man. J. Pharmacol. Exp. Ther., 224,180–185.Google Scholar
  7. 7.
    M.M. Callahan, R.S. Robertson, A.R. Branfman, M.F. McComish, and D.W. Yesair (1983) Comparison of caffeine metabolism in three nonsmoking populations after oral administration of radiolabeled caffeine. Drug Metab. Dispos., 11, 211–217.PubMedGoogle Scholar
  8. 8.
    D.M. Grant, B.K. Tang, and W. Kalow (1983) Variability in caffeine metabolism. Clin. Pharmacol. Ther., 33,591–602.CrossRefGoogle Scholar
  9. 9.
    J. Blanchard, J.A. Sawers, J.H.G. Jonkman, and D.D. Tang-Liu (1985) Comparison of the urinary metabolite profile of caffeine in young and elderly males. Br. J. Clin. Pharmacol., 19, 225–232.CrossRefGoogle Scholar
  10. 10.
    C.P. Denaro, C.R. Brown, M. Wilson, P. Jacob, and N.L. Benowitz (1990) Dose-dependency of caffeine metabolism with repeated dosing. Clin., Pharmacol. Ther., 48, 277–285.PubMedCrossRefGoogle Scholar
  11. 11.
    M.E. Campbell, D.M. Grant, T. Inaba, and W. Kalow (1987) Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes. Drug Metab. Dispos., 15, 237–249.PubMedGoogle Scholar
  12. 12.
    D.M. Grant, M.E. Campbell, B.K. Tang, and W. Kalow (1987) Biotransformation of caffeine by microsomes from human liver. Biochem. Pharmacol., 36, 1251–1260.CrossRefGoogle Scholar
  13. 13.
    P.V. Desmond, R.V. Patwardhan, R.F. Johnson, and S. Schenker (1980) Impaired elimination of caffeine in cirrhosis. Dig., Dis. Sci., 25,193–197.PubMedCrossRefGoogle Scholar
  14. 14.
    E. Renner, H. Wietholtz, R Huguenin, M.J. Arnaud, and R. Preisig (1984) Caffeine: A model compound for measuring liver function. Hepatology, 4, 38–46.PubMedCrossRefGoogle Scholar
  15. 15.
    N.R. Scott, D. Stambuk, J. Chakraborty, V. Marks, and M.Y. Morgan (1989) The pharmacokinetics of caffeine and its dimethylxanthine metabolites in patients with chronic liver disease. Br. J. Clin. Pharmacol., 27, 205–213.PubMedCrossRefGoogle Scholar
  16. 16.
    A. Holstege, M. Staiger, K. Haag, and W. Gerok (1989) Correlation of caffeine elimination and Child’s classification in liver cirrhosis. Klin. Wochenschr., 67, 6–15.PubMedCrossRefGoogle Scholar
  17. 17.
    H. Weitholtz, M. Voegelin, M.J. Arnaud, J. Bircher, and R. Preisig (1981) Assessment of the cytochrome P-448 dependent liver enzyme system by a caffeine breath test. Eur. J. Clin. Pharmacol., 21, 53–59.CrossRefGoogle Scholar
  18. 18.
    W.D. Parsons and A.H. Neims (1978) Effect of smoking on caffeine clearance. Clin. Pharmacol. Ther., 24,40–45.PubMedGoogle Scholar
  19. 19.
    L.J. Broughton and H.J. Rogers (1981) Decreased systemic clearance of caffeine due to cimetidine. Br. J. Clin. Pharmacol., 12,155–159.PubMedGoogle Scholar
  20. 20.
    M.L. Eichman, D.E. Guttman, C. Van Winkle, and E.P. Guth (1962) Interactions of xanthine molecules with bovine serum albumin J. Pharm. Sci., 51, 66–71.PubMedCrossRefGoogle Scholar
  21. 21.
    R.V. Patwardhan, R.V. Desmond, R.F. Johnson, and S. Schenker (1980) Impaired elimination of caffeine by oral contraceptive steroids. J. Lab. Clin. Med., 95, 603–608.PubMedGoogle Scholar
  22. 22.
    J. George, T. Murphy, R. Roberts, W.G.E. Cooksley, J.W. Halliday, and L.W. Powell (1986) Influence of alcohol and caffeine consumption on caffeine elimination. Clin. Exp. Pharmacol. Physiol., 13, 731–736.PubMedCrossRefGoogle Scholar
  23. 23.
    A. Lelo, D.J. Birkett, R.A. Robson, and J.O. Miners (1986) Comparative pharmacokinetics of caffeine and its primary demethylated metabolites paraxanthine, theobromine and theophylline in man. Br. J. Clin. Pharmacol., 22,177–182.PubMedCrossRefGoogle Scholar
  24. 24.
    D.C. May, C.H. Jarboe, A.B. Van Bakel, and W.M. Williams (1982) Effects of cimetidine on caffeine disposition in smokers and nonsmokers. Clin. Pharmacol. Ther., 31, 656–661.PubMedCrossRefGoogle Scholar
  25. 25.
    M.E. Campbell, S.P. Spielberg, and W. Kalow (1987) A urinary metabolite ratio that reflects systemic caffeine clearance. Clin. Pharmacol. Ther., 42,157–165.PubMedCrossRefGoogle Scholar
  26. 26.
    M. Carbo, J. Segura, R. De la Tone, J. Badenas, and J. Cami (1989) Effect of quinolones on caffeine disposition. Clin. Pharmacol. Ther., 45, 234–240.PubMedCrossRefGoogle Scholar
  27. 27.
    M.J. Arnaud (1984) Products of metabolism of caffeine, in Caffeine, Perspectives from Recent Research., P. B. Dews, ed. Springer-Verlag, Berlin, pp. 3–38.Google Scholar
  28. 28.
    A. Lelo, J.O. Miners, R.A. Robson, and D.J. Burkett (1986) Quantitative assessment of caffeine partial clearances in man. Br. J. Clin. Pharmacol., 22, 183–186.PubMedCrossRefGoogle Scholar
  29. 29.
    H.H. Cornish and A.A. Christman (1957) A study of the metabolism of theobromine, theophylline, and caffeine in man. J. Biol. Chem., 228, 315–323.PubMedGoogle Scholar
  30. 30.
    M.M. Callahan, R.S. Robertson, M.J. Arnaud, A.R. Branfman, M.F. McComish, and D.W. Yesair (1982) Human metabolism of [1-methyl-14C]- and [2-14C]caffeine after oral administration. Drug Metab. Dispos., 10, 417–423.PubMedGoogle Scholar
  31. 31.
    B.K. Tang, D.M. Grant, and W. Kalow (1983) Isolation and identification of 5-acetylamino-6-formylamino-3-methyluracil as a major metabolite of caffeine in man. Drug Metab. Dispos., 11, 218–220.Google Scholar
  32. 32.
    D.M. Grant, B.K. Tang, and W. Kalow (1983) Polymorphic N-acetylation of a caffeine metabolite. Clin. Pharmacol. Ther., 33, 355–359.CrossRefGoogle Scholar
  33. 33.
    D.M. Grant, B.K. Tang, M.E. Campbell, and W. Kalow (1986) Effect of allopurinol on caffeine disposition in man. Br. J. Clin. Pharmacol., 21, 454–458.CrossRefGoogle Scholar
  34. 34.
    R.M. Welch, S.Y. Hsu, and R.L. DeAngelis (1977) Effect of Aroclor 1254, phenobarbital, and polycyclic aromatic hydrocarbons on the plasma clearance of caffeine in the rat. Clin. Pharmacol. Ther., 22, 791–798.PubMedGoogle Scholar
  35. 35.
    F.J. Gonzalez (1989) The molecular biology of cytochrome P450s. Pharmacol., Rev., 40, 243–288.Google Scholar
  36. 36.
    H. Weitholtz, T. Zysset, K. Kreiten, D. Kohl, R. Buchsel, and S. Matern (1989) Effect of phenytoin, carbamazepine, and valproic acid on caffeine metabolism. Eur. J. Clin. Pharmacol., 36, 401–406.CrossRefGoogle Scholar
  37. 37.
    W. Stille, S. Harder, S. Mieke, C. Beer, M. Pramod, M. Shah, K. Frech, and A.H. Staib (1987) Decrease of caffeine elimination in man during co-administration of 4-quinolones. J. Antimicrob. Chemother., 20, 729–734.PubMedCrossRefGoogle Scholar
  38. 38.
    R. Joeres, H. Klinker, H. Hensler, and E. Richter (1987) Influence of mexiletine on caffeine elimination. Pharmacol. Ther., 33,163–169.PubMedCrossRefGoogle Scholar
  39. 39.
    D.C. Mays, C. Camisa, P. Cheney, C.M. Pacula, S. Nawoot, and N. Gerber (1987) Methoxsalen is a potent inhibitor of the metabolism of caffeine in humans. Clin. Pharmacol. Ther, 42,621–626.PubMedCrossRefGoogle Scholar
  40. 40.
    C.A. Beach, D.C. Mays, R.C. Guiler, C.H. Jacober, and N. Gerber (1986) Inhibition of elimination of caffeine by disulfiram in normal subjects and recovering alcoholics. Clin. Pharmacol. Ther., 39,265–270.PubMedCrossRefGoogle Scholar
  41. 41.
    M.C. Mitchell, A.M. Hoyumpa, S. Schenker, R.F. Johnson, S. Nichols, and R.V. Patwardhan (1983) Inhibition of caffeine elimination by short-term ethanol administration. J. Lab. Clin. Med., 101, 826–834.PubMedGoogle Scholar
  42. 42.
    W.D. Parsons and J.G. Pelletier (1982) Delayed elimination of caffeine by women in the last 2 weeks of pregnancy. Can. Med. Assoc. J., 127, 377–380.PubMedGoogle Scholar
  43. 43.
    A. Aldridge, J.V. Aranda, and A.H. Neims (1979) Caffeine metabolism in the newborn. Clin. Pharmacol. Ther., 25, 447–453.PubMedGoogle Scholar
  44. 44.
    J.V. Aranda, C.E. Cook, W. Gorman, J.M. Collinge, and P.M. Loughnan (1979) Pharmacokinetic profile of caffeine in the premature newborn infant with apnoea. J. Pediatr., 94, 663–668.PubMedCrossRefGoogle Scholar
  45. 45.
    R. Corodischer and M. Karplus (1982) Pharmacokinetic aspects of caffeine in premature infants with apnoea. Eur. J. Clin. Pharmacol., 22, 47–52.CrossRefGoogle Scholar
  46. 46.
    O. Carrier, G. Pons, E. Rey, M. Richard, C. Moran, J. Badoual, and G. Olive (1988) Maturation of caffeine metabolic pathways in infancy. Clin., Pharmacol. Ther., 44,145–151.CrossRefGoogle Scholar
  47. 47.
    S.M. Lohman and R.P. Meich (1976) Theophylline metabolism by the rat microsomal system. J. Pharmacol. Exp. Ther., 196,213–225.Google Scholar
  48. 48.
    T.J. Monks, J. Caldwell, and R.L. Smith (1979) Influence of methylxanthinecontaining foods on theophylline metabolism and kinetics. Clin. Pharmacol. Ther., 26, 513–524.PubMedGoogle Scholar
  49. 49.
    D.D. Drouillard, E.S. Vesell, and B.H. Dvorchik (1978) Studies on theobromine disposition in normal subjects. Clin. Pharmacol. Ther., 23, 296–302.PubMedGoogle Scholar
  50. 50.
    S.H. Dorrbecker, R.A. Ferraina, B.R. Dorrbecker, and P.A. Kramer (1987) Caffeine and paraxanthine pharmacokinetics in the rabbit: Concentration and product inhibition effects. J. Pharmacokinet. Biopharm., 15,117–132.PubMedGoogle Scholar
  51. 51.
    D.D. Tang-Liu, R.L. Williams, and S. Riegelman (1982) Nonlinear theophylline elimination. Clin. Pharmacol. Ther., 31, 358–369.CrossRefGoogle Scholar
  52. 52.
    H. Efthimion, D.J. Morgan, L. Ioannides-Demos, K. Raymond, and A.J. McLean (1984) Influence of chronic dosing on theophylline clearance. Br. J. Clin. Pharmacol., 17, 525–530.CrossRefGoogle Scholar
  53. 53.
    A.N. Kotake, D.A. Schoeller, G.H. Lambert, A.L. Baker, D.D. Schaffer, and H. Josephs (1982) The caffeine CO2 breath test: Dose response and route of N-demethylation in smokers and nonsmokers. Clin., Pharmacol. Ther., 32, 261–269.PubMedCrossRefGoogle Scholar
  54. 54.
    C.L. Leson, M.A. McGuigan, and S.M. Bryson (1988) Caffeine overdose in an adolescent male. J. Toxicol. Clin. Toxicol., 26, 407–415.PubMedGoogle Scholar
  55. 55.
    M. Bonati, R. Latini, G. Tognoni, J.F. Young, and S. Garattini (1984) Inter-species comparison of in vivo, caffeine pharmacokinetics in man, monkey, rabbit, rat and mouse. Metab. Rev., 15,1355–1383.CrossRefGoogle Scholar
  56. 56.
    R. Newton, L.J. Broughton, M.J. Lind, H.J. Rogers, and I.D. Bradbrook (1981) Plasma and salivary pharmacokinetics of caffeine in man. Eur J. Clin. Pharmacol., 21, 45–52.PubMedCrossRefGoogle Scholar
  57. 57.
    B.E. Statland and T.J. Demas (1980) Serum caffeine half-lives: Healthy subjects vs. patients having alcohol hepatic disease. Am. J. Clin. Pathol., 73, 390–393.PubMedGoogle Scholar
  58. 58.
    R.N.H. Pugh, I.M. Murray-Lyon, J.L. Dawson, M.C. Pietroni, and R. Williams (1973) Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg., 60, 646–649.PubMedCrossRefGoogle Scholar
  59. 59.
    N.R. Scott, D. Stambuk, J. Chakraborty, V. Marks, and M. Morgan (1988) Caffeine clearance and biotransformation in patients with chronic liver disease. Clin. Sci., 74, 377–384.PubMedGoogle Scholar
  60. 60.
    R.E. Kouri (1976) Relationship between labels of aryl hydrocarbon hydroxyl-ase activity and susceptibility to 3-methylcholanthrene and benzo[a]pyrene-induced cancers in inbred strains of mice, in Polynuclear Aromatic Hydrocarbons: Chemistry, Metabolism and Carcinogenesis., R. I. Freundenthal and P. W. Jones, eds. Raven, New York, pp. 139–160.Google Scholar
  61. 61.
    G.H. Lambert and D.W. Nebert (1977) Genetically mediated induction of drug metabolizing enzymes associated with congenital defects. Teratology, 16, 147–153.PubMedCrossRefGoogle Scholar
  62. 62.
    D.W. Nebert and N.M. Jensen (1979) The Ah locus: Genetic regulation of the metabolism of carcinogens, drugs and other environmental chemicals by cytochrome P-450-mediated monooxygenases. CRC Crit. Rev. Biochem., 6, 401–437.PubMedCrossRefGoogle Scholar
  63. 63.
    D.V. Parke and C. loannides (1982) Role of mixed-function oxidases in the formation of biological reactive intermediates. Adv. Exp. Med. Bio1., 136A, 23–38.Google Scholar
  64. 64.
    G. Jost, A. Wahllander, U. Von Mandach, and R. Preisig (1987) Overnight salivary caffeine clearance: A liver function test suitable for routine use. Hepatology 7, 338–344.PubMedCrossRefGoogle Scholar
  65. 65.
    T.A. Shaw-Stiffel, B.K. Tang, S.P. Spielberg, and N.H. Shear (1988) Caffeine—A novel probe to assess drug effects on hepatic cytochrome P-450 activity. Hepatology, 8, 1385.Google Scholar
  66. 66.
    J. Blanchard and S.J.A. Sawers (1983) Relationship between urine flow rate and renal clearance of caffeine in man. J. Clin., Pharmacol., 23,134–138.PubMedGoogle Scholar
  67. 67.
    M. Schnegg and B.H. Lauterburg (1986) Quantitative liver function in the elderly assessed by galactose elimination capacity, aminopyrine demethylation and caffeine clearance. J. Hepatol., 3,164–171.PubMedCrossRefGoogle Scholar
  68. 68.
    C. P. Denaro and N. L. Benowitz. Correlation of metabolite ratios of caffeine with caffeine clearance. Manuscript in preparation.Google Scholar
  69. 69.
    D.M. Grant, B.K. Tang, and W. Kalow (1984) A simple test for acetylator phenotype using caffeine. Br. J. Clin. Pharmacol., 17,459–464.CrossRefGoogle Scholar
  70. 70.
    B.K. Tang, D. Kadar, and W. Kalow (1987) An alternative test for acetylator phenotyping with caffeine. Clin., Pharmacol. Ther., 42, 509–513.CrossRefGoogle Scholar
  71. 71.
    J.B. Saunders, N. Wright, and K.O. Lewis (1980) Predicting outcome of paracetamol poisoning by using 14C-aminopyrine breath test. Br. Med. J., 280, 279–280.PubMedCrossRefGoogle Scholar
  72. 72.
    J.F. Schneider, A.L. Baker, N.W. Haines, G. Hatfield, and J.L. Boyer (1980) Aminopyrine N-demethylation: A prognostic test of liver function in patients with alcoholic liver disease. Gastroenterology, 79,1145–1150.PubMedGoogle Scholar
  73. 73.
    L. Ranek, P.B. Andreasen, and N. Tygstrup (1976) Galactose elimination capacity as a prognostic index in patients with fulminant liver failure. Gut., 17, 959–964.PubMedCrossRefGoogle Scholar
  74. 74.
    J. Lindskov (1982) The quantitative liver function as measured by galactose elimination capacity: II. Prognostic value and changes during disease in patients with cirrhosis. Acta. Med. Scand., 212, 303–308.PubMedCrossRefGoogle Scholar
  75. 75.
    J.P. Villeneuve, C. Infante-Rivard, M. Ampelas, G. Pomier-Layrargues, R.M. Huet, and D. Marleau (1986) Prognostic value of the aminopyrine breath test in cirrhotic patients. Hepatology, 6, 928–931.PubMedCrossRefGoogle Scholar
  76. 76.
    G. Pomier-Layrargues, P.M. Huet, C. Infante-Rivard, J.P. Villenueve, D. Marleau, L. Dugay, S. Tanguay, and R Lavuie (1988) Prognostic value of indocyanine green and lidocaine kinetics for survival and chronic hepatic encephalopathy in cirrhotic patients following elective end-to-side portacaval shunt. Hepatology, 8, 1506–1510.PubMedCrossRefGoogle Scholar
  77. 77.
    J. Bircher (1986) Assessment of prognosis in advanced liver disease: To score or to measure, that’s the question. Hepatology, 6,1036–1037.PubMedCrossRefGoogle Scholar
  78. 78.
    E. Zylber-Katz, L. Granit, and M. Levy (1984) Relationship between caffeine concentrations in plasma and saliva. Clin. Pharmacol. Then, 36,133–137.CrossRefGoogle Scholar
  79. 79.
    A. Wahllander, E. Renner, and R. Preisig (1985) Fasting plasma caffeine concentration. Scand. J. Gastroenterol., 20,1133–1141.PubMedCrossRefGoogle Scholar
  80. 80.
    A. Lelo, J.O. Miners, R. Robson, and D.J. Birkett (1986) Assessment of caffeine exposure: Caffeine content of beverages, caffeine intake, and plasma concentrations of methylxanthines. Clin. Pharmacol. Then, 39, 54–59.CrossRefGoogle Scholar
  81. 81.
    R.M. Mooney, J.W. Halliday, W.G.E. Cooksley, and L.W. Powell (1984) Fasting serum caffeine (FSC) as an index of functional liver cell mass. Hepatology, 4(58), 10–21.Google Scholar
  82. 82.
    G. Marchesini, G.A. Checchia, G. Grossi, R. Lolli, G.D. Bianchi, M. Zoli, and E. Pisi (1988) Caffeine intake, fasting plasma caffeine and caffeine clearance in patients with liver diseases. Liver, 8, 241–246.PubMedGoogle Scholar
  83. 83.
    T. Wang, F. Stellaard, and G. Paumgartner (1985) Caffeine elimination: A test of liver function. Klin. Wochenschr., 63, 1124–1128.PubMedCrossRefGoogle Scholar
  84. 84.
    R. Joeres, H. Klinker, H. Heusler, J. Epping, G. Hofstetter, D. Drost, H. Reuss, W. Zilly, E. Richter (1987) Factors influencing the caffeine test for cytochrome P 448-dependent liver function. Arch. Toxicol., 60, 93–94.PubMedCrossRefGoogle Scholar
  85. 85.
    M.G. Bianchetti, R. Kraemer, J. Passweg, J. Jost, and R. Preisig (1988) Use of salivary levels to predict clearance of caffeine in patients with cystic fibrosis. J., Pediatr. Gastroenterol. Nutr., 7, 688–693.PubMedCrossRefGoogle Scholar
  86. 86.
    M. Pirovino, F. Meister, E. Rubli, and G. Karlaganis (1989) Preserved cytosolic and synthetic liver function in jaundice of severe extrahepatic infection. Gastroenterology, 96,1589–1595.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Charles P. Denaro
  • Neal L. Benowitz

There are no affiliations available

Personalised recommendations