EBV Genome Organization in Lymphoblastoid Cell Lines Established Following Enhancement With Aflatoxin B1 and Relevance to Nasopharyngeal Carcinoma

  • Earl E. Henderson
  • Gerald Fronko
  • Carol Franks
Part of the Experimental Biology and Medicine book series (EBAM, volume 24)


The mechanisms underlying interactions between viruses and carcinogens are only beginning to be understood. Peripheral blood lymphocytes (PBLs) separated from patients with acquired immunodeficiency syndrome (AIDS) are a relevant model to study chemical carcinogen-EBV synergism, due to the high degree of EBV reactivation and potential for EBV-associated malignant lymphomas in patients with AIDS. To better understand chemical carcinogen-EBV synergism at a molecular level, we examined the organization of the terminal region of EBV genome carried by LCLs established from patients with AIDS. For this study we chose LCLs established from PBLs treated with aflatoxin B1 (AFB1), a mycotoxin and known carcinogen. From an analysis of the EcoR1 Dhet terminal region, we found the majority of the LCLs established spontaneously to be clonal in origin, but individual lineages established from the same patient often carried EBV episomal circular forms of the genome with varying numbers of fused 500-base pair terminal repeats. Linear forms of the EBV genome with varying numbers of fused 3’ and 5’ 500-base pair terminal repeats were only detected in spontaneously derived LCLs which were established from carcinogen-treated PBLs. The presence of linear EBV DNA correlated with the presence of extracellular transforming virus. LCLs established from PBLs separated from patients with AIDS following addition of exogenous EBV (B95.8 or FF41–1) most often carried episomal circular forms of EBV genome with a terminal region characteristic of the infecting viral strain. LCLs derived from EBV-infected PBLs treated with AFB1 often carried variation of the parent episomal circular form differing in terminal region varying by number of fused terminal repeats. In addition, various forms of linear EBV DNA varying by the number of fused 3’ terminal repeats could be detected in these LCLs. These results show that the chemical carcinogen AFB1 directly interact with EBV and drive EBV-infected lymphocytes toward a semi-permissive infection. Furthermore, the permissive state of an LCL correlates with changes in the organization of the terminal region of the EBV genome and provides a model to explore how chemical carcinogens enhance EBV-induced transformation and EBV replication, and induce malignant conversion of EBV-carrying LCLs.


Terminal Region Terminal Repeat Chemical Carcinogen Spontaneous Transformation Malignant Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.A. Andiman, R. Eastman et al., Lancet 2, 1390 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    R.S. Chang et al., J. Inf. Dis. 151, 459 (1985).CrossRefGoogle Scholar
  3. 3.
    J.S. Greenspan, D. Greenspan et al., N. Eng. J. Med. 313, 1564 (1985).CrossRefGoogle Scholar
  4. 4.
    D.L. Birx et al., N. Eng. J. Med. 314, 874 (1986).CrossRefGoogle Scholar
  5. 5.
    G. Ragona, M.C. Sirianni et al., Clin. Exp. Imnunol. 66, 17 (1986).Google Scholar
  6. 6.
    C.V. Sumaya, R.N. Boswell et al., J. Inf. Dis. 154, 864 (1986).CrossRefGoogle Scholar
  7. 7.
    J.L. Ziegler, R.C. Miner et al., Lancet 2, 631 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    A.M. Levine, P.R. Meyer et al., Ann. Intern. Med. 100, 7 (1984).PubMedGoogle Scholar
  9. 9.
    J.M. Petersen, R.R. Tubbs et al., Ain. J. Med. 78, 141 (1985).CrossRefGoogle Scholar
  10. 10.
    P-G. Pelicci, D.M. Knowles II et al., J. Exp. Med. 164, 2049 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    R.S. Blumberg, T. Paradis et al., J. Inf. Dis. 155, 877 (1987).CrossRefGoogle Scholar
  12. 12.
    S. Kenney, J. Kamine et al., Proc. Natl. Acad. Sci. USA 85, 1652 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    B.E. Henderson, E. Louie et al., N. Eng. J. Med. 295, 1101 (1976).CrossRefGoogle Scholar
  14. 14.
    G. de-Thé, A. Geser et al., Nature (London) 274, 756 (1978).CrossRefGoogle Scholar
  15. 15.
    A. Faggioni, D.V. Ablashi et al., In “Nasopharyngeal Carcinoma: Current Concepts” U. Prasad, D.V. Ablashi et al., (eds.), p. 333. University of Malaya, Kuala Lumpur (1983).Google Scholar
  16. 16.
    J.-C. Lin et al., Carcinogenesis 4, 185 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    D. le Francois-Chabas, L. Montagnier, CRS Acad. Sci. Ser. III Sci. Vie 296, 283 (1983).Google Scholar
  18. 18.
    D.J. Kessler, C.A. Heilman et al., Cancer Res. 47, 527 (1987).PubMedGoogle Scholar
  19. 19.
    E. Cesarman, R. Dalla-Favera et al., Science 238, 1272 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    D. Fischer, G. Miller et al., Cell 24, 543 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    E. Henderson, J. Robinson et al., Virology 82, 196 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Baer, A. Bankier et al., Nature (London) 310, 207 (1984).CrossRefGoogle Scholar
  23. 23.
    G. Laux et al., The EMBO J. 7, 769 (1988).Google Scholar
  24. 24.
    N. Raab-Traub, K. Flynn, Cell 47, 883 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    E.E. Henderson, G. Fronko, Int. J. Cancer 33, 331 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    R.S. Lake, M.L. Kropko et al., Mutat. Res. 74, 357 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Amstad, A. Levy et al., Carcinogenesis 5, 719 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Kleinberger, Y.B. Flint et al., Mol. Cell. Biol. 8, 1366 (1988).PubMedGoogle Scholar
  29. 29.
    Z.A. Ronal, I.B. Weinstein, J. Viral. 62, 1057 (1988).Google Scholar
  30. 30.
    N.A. Brown, C-R. Liu et al., J. Virol. 62, 962 (1988).PubMedGoogle Scholar
  31. 31.
    J. Banerji et al., Cell 33, 729 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    S.D. Gillies, S.L. Morrison et al., Cell 33, 717 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    C. Queen, D. Baltimore, Cell 33, 741 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Earl E. Henderson
    • 1
  • Gerald Fronko
    • 1
  • Carol Franks
    • 1
  1. 1.Department of Microbiology and Immunology, and the Fels Institute for Cancer Research and Molecular BiologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations