Advertisement

EBNA-2 Transactivation of CD23

  • F. Wang
  • H. Kikutani
  • S. Tsang
  • T. Kishimoto
  • E. Kieff
Chapter
Part of the Experimental Biology and Medicine book series (EBAM, volume 24)

Abstract

Epstein-Barr virus nuclear protein-2 (EBNA-2) is an essential gene for Epstein-Barr virus (EBV) induced B lymphocyte growth transformation (1,2). EBNA-2 induces both viral and cellular gene expression including the EBV latent membrane protein (LMP1), CD21, CD23, and c-fgr (3,4,5,6,7). CD23 is a B lymphocyte activation marker which is closely associated with EBV induced B lymphocyte growth transformation (8,9). Recent studies of CD23 expression in BJAB cells after EBNA-2 and LMP1 transfection revealed that these proteins acted synergistically to induce high level CD23 expression (6). LMP1 induced specifically the type b CD23 mRNA, whereas EBNA-2 induced both type a and type b CD23 mRNA transcribed from different promoters. These studies suggested that EBNA-2 transactivated an enhancer of general CD23 transcription.

Keywords

CD23 mRNA Chloramphenicol Acetyl Transferase CD23 Promoter BJAB Cell Fold Average Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hammerschmidt, W. and B. Sugden., Nature 340, 393 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    Cohen, J.I., F. Wang, et. al., Proc. Natl. Acad. Sci. USA 86, 9558 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    Abbot, S.D., M. Rowe, et. al.., J. Virol. 64, 2126 (1990).PubMedGoogle Scholar
  4. 4.
    Wang, F., S. Tsang, et. al., J. Virol. 64, 3407 (1990).PubMedGoogle Scholar
  5. 5.
    Wang, F., C.D. Gregory, et. al., Proc. Natl. Acad. Sci. USA 84, 3452 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    Wang, F. C. Gregory, et. al., J. Virol. 64, 2309 (1990).PubMedGoogle Scholar
  7. 7.
    knutsen, J.C., J. Virol. 64, 2530 (1990).Google Scholar
  8. 8.
    Thorley-Lawson, D.A. and K.P. Mann., J. Exp. Med. 162, 45 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    Azim, T. and D.H. Crawford. Int. J. Cancer. 42, 23 (1988).Google Scholar
  10. 10.
    Yokota, A., H. Kikutani, et. al., Cell 55, 611 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    Suter, U., R. Bastos, et. al., Nucleic Acids Res. 15, 7295 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    Suter, U., G. Texido, et. al., J. Immunol. 143, 3087 (1989).PubMedGoogle Scholar
  13. 13.
    Calender, A., M. Billaud, et. al., Proc. Natl. Acad. Sci. USA 84, 8060 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    Rickinson, A.B., L.S. Young, et. al., J. Virol. 61, 1310 (1987).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • F. Wang
    • 1
  • H. Kikutani
    • 2
  • S. Tsang
    • 1
  • T. Kishimoto
    • 2
  • E. Kieff
    • 1
  1. 1.Departments of Medicine and Microbiology and Molecular GeneticsHarvard Medical SchoolBostonUSA
  2. 2.Division of Immunology, Institute for Molecular and Cellular BiologyOsaka UniversityOsakaJapan

Personalised recommendations