Advertisement

Heterodimers of the Zebra and Fos Basic Domains Bind DNA with the Specificity of Zebra

  • N. Taylor
  • J. L. Kolman
  • G. Miller
Chapter
Part of the Experimental Biology and Medicine book series (EBAM, volume 24)

Abstract

Many DNA binding proteins dimerize and interact with palindromic DNA sequences to regulate gene expression (for review see 1). One class of DNA-binding proteins has been shown to dimerize through a leucine zipper structural motif. A domain of basic amino acids, immediately 5’ to the heptad leucine repeat, mediates specific chemical interactions with DNA and is responsible for binding specificity. Protein dimers can not bind DNA unless there are two functional basic domains (2).

Keywords

Basic Amino Acid Leucine Zipper Basic Domain Dimerization Domain Leucine Zipper Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.F. Johnson and S.L. McKnight Annu Rev Biochem 58, 799 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Neuberg, J. Adamkiewicz, et al., Nature 341, 243 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Kouzarides and E. Ziff, Nature 340, 568 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    J.W. Sellers and K. Struhl, Nature 341, 74 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Nakabeppu and D. Nathans, EMBO J 8, 3833 (1989).PubMedGoogle Scholar
  6. 6.
    M.R. Montminy, K.A. Sevarino, et al., Proc Natl Acad Sci 83, 6682 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    W. Lee, P. Mitchell, et al., Cell 49, 741 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    D.M. Benbrook and N.C. Jones, Oncogene 5, 295 (1990).PubMedGoogle Scholar
  9. 9.
    C.J. Kara, H-C. Liou, et al., Mot Cell Biot 10, 1347 (1990).Google Scholar
  10. 10.
    L.B. Ivashkiv, H-C. Liou, et al., Mol Cell Biot 10, 1609 (1990).Google Scholar
  11. 11.
    J. Countryman and G. Miller, Proc Natl Acad Sci 81, 7632 (1985).Google Scholar
  12. 12.
    A. Chevallier-Greco, E. Manet, et al., EMBO J 5, 3243 (1986).PubMedGoogle Scholar
  13. 13.
    K. Takada, N. Shimizu, et al., J Virol 57, 1016 (1986).PubMedGoogle Scholar
  14. 14.
    P.J. Farrell, D.T. Rowe, et al., EMBO J 8, 127 (1989).PubMedGoogle Scholar
  15. 15.
    N. Taylor, J.L. Kolman, et al., Submitted, J Virol (1990).Google Scholar
  16. 16.
    G. Urier, M. Buisson, et al., EMBO J 8, 1447 (1989).PubMedGoogle Scholar
  17. 17.
    E. Flemington and S. Speck, J Virol 64, 1217 (1990).PubMedGoogle Scholar
  18. 18.
    G. Packham, A. Economou, et al., J Virol 64, 2110 (1990).PubMedGoogle Scholar
  19. 19.
    P.M. Lieberman, M.J. Hardwick, et al., J Virol 64, 1143 (1990).PubMedGoogle Scholar
  20. 20.
    P.M. Leiberman and A.J. Berk, J Virol 64, 2560 (1990).Google Scholar
  21. 21.
    Y-N. Chang, D.L-Y. Dong, et al., J Virol 64, 3358 (1990).Google Scholar
  22. 22.
    E.K. O’Shea, R. Rutkowski, et al., Science 243, 538 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • N. Taylor
    • 1
  • J. L. Kolman
    • 1
  • G. Miller
    • 1
    • 2
  1. 1.Deparments of Molecular Biophysics and BiochemistryYale UniveristyNew HavenUSA
  2. 2.Pediatrics and Epidemiology and Public HealthYale UniveristyNew HavenUSA

Personalised recommendations