Skip to main content

Part of the book series: Progress in Probability ((PRPR,volume 27))

Summary

A general framework of a stochastic version of bifurcation theory is proposed. The concepts are exemplified by one dimensional examples which are perturbed versions of deterministic differential equations exhibiting the elementary bifurcation scenarios. As explosion in finite time is possible, local stochastic dynamical systems have to be introduced.

on leave from: Institut für Dynamische Systeme Universität Bremen Postfach 330 440 2800 Bremen 33 W-Germany

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, L.: Lyapunov exponents of nonlinear stochastic systems. In: G. I. Schueller, F. Ziegler (eds.): Nonlinear Stochastic Dynamic Engineering Systems. Springer 1988.

    Google Scholar 

  2. Arnold, L., Boxler, P.: Eigenvalues, bifurcation and center manifolds in the presence of noise. In: C. Dafermos et al. (eds.): EQUADIFF′87. M. Dekker 1989.

    Google Scholar 

  3. Arnold, L., Kliemann, W., Oeljeklaus, E.: Lyapunov exponents of linear stochastic systems. Proceedings of a workshop Bremen 1984. Lecture Notes in Mathematics vol. 1186. Springer 1986.

    Google Scholar 

  4. Arnold, L., Oeljeklaus, E., Pardoux, E.: Almost sure and moment stability for linear Ito equations. Proceedings of a workshop Bremen 1984. Lecture Notes in Mathematics vol. 1186. Springer 1986.

    Google Scholar 

  5. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer 1977.

    Google Scholar 

  6. Arnold, V. I. (ed.): Dynamical Systmes V: Theory of Bifurcations and Catastrophes. Springer 1990.

    Google Scholar 

  7. Baxendale, P.: Asymptotic behaviour of stochastic flows of diffeomorphisms. Proceedings of 15th SPA, Nagoya 1985. Lecture Notes in Mathematics, Springer 1985.

    Google Scholar 

  8. Boxler, P.: A stochastic version of center manifold theory. Probab. Th. Rel. Fields 83 (1989), 509–545.

    Article  MathSciNet  MATH  Google Scholar 

  9. Boxler, P.: Center manifolds for randomly perturbed dynamical systems. Report No. 212, Institut für Dynamische Systeme, Universität Bremen 1989.

    Google Scholar 

  10. Boxler, P.: Lyapunov exponents indicate stability and detect stochastic bifurcations. In: P. Krée, W. Wedig (ed.): Effective Stochastic Analysis I. Springer 1990 (to appear).

    Google Scholar 

  11. Boxler, P.: A necessary condition for a stochastic bifurcation. In preparation.

    Google Scholar 

  12. Chow, S., Hale, J.: Methods of Bifurcation Theory. Springer 1982.

    Google Scholar 

  13. Crauel, H.: Lyapunov exponents and invariant measures of stochastic systems on manifolds. Proceedings of a workshop Bremen 1984. Lecture Notes in Mathematics vol. 1186. Springer 1986.

    Google Scholar 

  14. Crauel, H.: Markov measures for random dynamical systems. Submitted.

    Google Scholar 

  15. Guckenheimer, J., Holmes, Ph.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, 2nd ed. 1986.

    Google Scholar 

  16. Horsthemke, W., Lefever, R.: Noise-induced transitions. Springer 1984.

    Google Scholar 

  17. Kunita, H.: Stochastic flows and stochastic differential equations. To appear.

    Google Scholar 

  18. Oseledec, V. I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19 (1968), 197–231.

    MathSciNet  Google Scholar 

  19. Prohorov, Y., Rozanov, Y.: Probability Theory. Springer 1969.

    Google Scholar 

  20. Ruelle, D.: Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press 1989.

    Google Scholar 

  21. Xu, K.: Stochastic normal forms. Ph.D. Thesis. Bremen 1990.

    Google Scholar 

  22. Zeeman, E. C.: On the classification of dynamical systems. Bull. London Math Soc. 20 (1988), 545–557.

    Article  MathSciNet  MATH  Google Scholar 

  23. Zeeman, E. C.: Stability of dynamical systems. Nonlinearity 1 (1988), 115–155.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arnold, L., Boxler, P. (1992). Stochastic bifurcation: instructive examples in dimension one. In: Pinsky, M.A., Wihstutz, V. (eds) Diffusion Processes and Related Problems in Analysis, Volume II. Progress in Probability, vol 27. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0389-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0389-6_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6739-3

  • Online ISBN: 978-1-4612-0389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics