Aerothermodynamic Phenomena and the Design of Atmospheric Hypersonic Airplanes

  • E. H. Hirschel


Basic design aspects of atmospheric hypersonic airplanes are discussed with regard to the involved aerothermodynamic phenomena. After sketching the design problems of such airplanes, aerothermodynamic tools (wind tunnel, computation methods) are reviewed together with their validation problems. After an overview of aerothermodynamic characteristics of hypersonic airplanes configurational aspects are discussed, including propulsion integration. With this background major aerothermodynamic phenomena (viscous phenomena, heat loads and heat transfer phenomena, real gas effects) are treated, always with regard on the one hand to the design problem, and on the other hand to the simulation problem. Finally needs of design work and necessary perspectives in research work are outlined.


Mach Number Wind Tunnel Heat Load Propulsion System Hypersonic Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.N.; “Aeronautical Technology 2000, a Projection of Advanced Vehicle Concepts”. National Academic Press, USA, N86–13235, 1985.Google Scholar
  2. 2.
    E.H.Hirschel, H.G.Hornung, J.Mertens, H.Oertel, W.Schmidt: “Aerothermodynamik von Überschallflugzeugen”. MBB/LKE122/HYPAC/1/A, 1987.Google Scholar
  3. 3.
    H.N.Kelly, A.R.Wieting, C.P.Shore, R.J.Nowak: “Recent Advances in Convectively Cooled Engine and Airframe Structures for Hypersonic Flight”. ICAS-Paper A2–02, 1978.Google Scholar
  4. 4.
    J.P.Arrington, J.J.Jones (eds.): “Shuttle Performance: Lessons Learned”. NASA CP2283, 1983.Google Scholar
  5. 5.
    J.F.Shea (ed.): “Report of the Defense Science Board Task Force on the NATIONAL AEROSPACE PLANE (NASP)”. Office of the Under-Secretary of Defense for Acquisition, Washington, D.C., 1988.Google Scholar
  6. 6.
    H.Lifka: “Aerodynamische und leistungsparametrische Analyse von Transportflugzeugen im M = 5 Bereich im Rahmen der BMFT-Studie “Überschallflugzeuge” für Konzept 3”. MBB/LKE121/HYPAC/R/003/A, 1987.Google Scholar
  7. 7.
    E.H.Hirschel, H.Grallert, J.Lafon, M.Rapuc: “Acquisition of an Aerothermodynamic Data Base by Means of a Winged Experimental Reentry Vehicle”. ZFW, Vol. 16, No. 1, 1992, pp. 15–27.Google Scholar
  8. 8.
    E.H.Hirschel, H.Grallert: “Verification of Aerothermodynamic Codes by Means of a Winged Experimental Re-Entry Vehicle”. Proc. 2nd European Aerospace Conference on Progress in Space Transportation, Bonn-Bad Godesberg, FRG, 22–24 May 1989, ESA SP-293, 1989, pp. 485 – 500.Google Scholar
  9. 9.
    P.Sacher: “Hypersonic Experimental Aircraft Technology Demonstrator HYTEX”. MBB-Flugzeuge, Ottobrunn, 1990.Google Scholar
  10. 10.
    D.E.Koelle, H.Kuczera: “SAENGER — An Advanced Launcher System for Europe”. Proc. 39th Congress of the International Astronautical Federation, Bangalore, India, 1988, Paper No. IAF-88–207, 1988.Google Scholar
  11. 11.
    R.M.Williams: “National Aero-space Plane: Technology for America’s Future”. Aerospace America, Vol. 24, No. 11, 1986, pp. 18 – 22.Google Scholar
  12. 12.
    D.Küchemann: “The Aerodynamic Design of Aircraft”. Pergamon Press, Oxford, 1978.Google Scholar
  13. 13.
    J.Seddon, E.L.Goldsmith: “Intake Aerodynamics”. W.Collins Sons & Co., London, 1985.Google Scholar
  14. 14.
    C.L.W.Edwards, W.J.Small, J.P.Weidner: “Studies of Scramjet/Air-frame Integration Techniques for Hypersonic Aircraft”. AIAA-Paper 75–58, 1975.Google Scholar
  15. 15.
    R.Cérésuela: “Stability and Control Problems of Hypersonic Aircraft”. ICAS Paper 70–17, 1970.Google Scholar
  16. 16.
    A.Eberle, A.Rizzi, E.H.Hirschel: “Numerical Solutions of the Euler Equations for Steady Flow Problems”. Volume 34 of Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig/Wiesbaden, 1992.CrossRefGoogle Scholar
  17. 17.
    E.H.Hirschel: “Super Computers Today: Sufficient for Aircraft Design? — Experiences and Demands”. In: H.W.Meuer (ed.): Super Computer ’88, Carl Hanser, Munchen-Wien, 1988, pp. 110 – 150.Google Scholar
  18. 18.
    W.Gentzsch, K.W.Neves: “Computational Fluid Dynamics: Algorithms & Supercomputers”. AGARDOGRAPH AGARD-A6–311, 1988.Google Scholar
  19. 19.
    D.I.A.Poll: “Boundary-Layer Transition on the Windward Face of Space Shuttle During Re-Entry”. AIAA-Paper 85–0899, 1985.Google Scholar
  20. 20.
    W.D.Goodrich, S.M.Derry, J.J.Bertin: “Shuttle Orbiter Boundary-Layer Transition: A Comparison of Flight and Wind-Tunnel Data”. AIAA-Paper 83–0485, 1983.Google Scholar
  21. 21.
    E.Reshotko: “Hypersonic Stability and Transition”. Workshop on Hypersonic Flow for Reentry Problems, Antibes, France, January 22–26, 1990, to be published.Google Scholar
  22. 22.
    N.N.: “Boundary-Layer Simulations and Control in Wind Tunnels”. AGARD-AR-224, 1988.Google Scholar
  23. 23.
    N.N.: “Computation of Three-Dimensional Boundary Layers Including Separation”. AGARD-R-741, 1987.Google Scholar
  24. 24.
    M.Situ, J.Schetz: “New Mixing Length Model for Turbulent High-Speed Flows”. AIAA-Paper 89–1821, 1989.Google Scholar
  25. 25.
    G.Hein: “Erprobung von Turbulenzmodellen für Hyperschallströmungen”. MBB/FE122/S/PUB/401, 1990 (Diploma Thesis, Technical University Munchen, 1990).Google Scholar
  26. 26.
    B.Edny: “Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock”. FFA Report 115, 1968.Google Scholar
  27. 27.
    B.H.Anderson: “Three-Dimensional Design Methodology of Supersonic Inlet Systems for Advanced Technology Aircraft”. In: Numerical Methods for Engine-Airframe Integration (S.N.B.Murthy, G.C.Paynter, eds.), Vol. 102 of Progress in Astronautics and Aeronautics, AIAA, New York, 1986, pp. 431–380.Google Scholar
  28. 28.
    G.Koppenwallner: “Low Reynolds-Number Influence on Aerodynamic Performance of Hypersonic Lifting Vehicles”. AGARD-CP 428, 1987, pp. 11–1 to 11–14.Google Scholar
  29. 29.
    Th.Gottmann: “Aspekte des HyperschalIfluges und Beschreibung des Leitkonzepts 4 der BMFT-Studie Überschallflug”. MBB/LKE127/HY-PAC/R/5/A, 1987.Google Scholar
  30. 30.
    R.K.Hoeld: “Die Berechnung dreidimensionaler Hyperschallströmungen mit Hilfe der Viscous-Shock-Layer-Gleichungen”. Fortschrittsberichte VDI, Reihe 7, Nr. 171, Düsseldorf, 1990 (Doctoral Thesis, Universität der Bundeswehr München, 1989).Google Scholar
  31. 31.
    A.Koç: “Aerodynamische Aufheizung des Demonstrators”. MBB/FE112/ HYPAC/TN/0130, 1990.Google Scholar
  32. 32.
    E.H.Hirschel, Ch.Mundt, F.Monnoyer, M.A.Schmatz: “Reynolds-Number Dependency of Radiation-Adiabatic Wall Temperature”. MBB-FE122-AERO-MT-872, 1990.Google Scholar
  33. 33.
    K.M.Wanie, M.A.Schmatz: “Numerical Analysis of Viscous Hypersonic Flow Past a Generic Forebody”. ICAS-Paper 90–6.7.2, 1990.Google Scholar
  34. 34.
    Ch.Mundt, R.Keraus, J.Fischer: “New Accurate Vectorized Approximations of State Surfaces for the Thermodynamic and Transport Properties of Equilibrium Air”. ZFW, Vol. 15, NO. 3, 1991, pp. 173–184.Google Scholar

Note added to the present publication

  1. E.H.Hirschel: “Viscous Effects”. In: Space Course, Aachen, 1991, pp. 12–1 to 12–35. Contribution to the Space Course 1991, Aachen, February 1991. Also: MBB/FE202/S/PUB/441, 1991.Google Scholar
  2. E.H.Hirschel, A.Koç, S.Riedelbauch: “Hypersonic Flow Past Radiation-Cooled Surfaces”. AIAA-Paper 91–5031, 1991.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • E. H. Hirschel
    • 1
  1. 1.Messerschmitt-Bölkow-Blohm GmbHMilitary Aircraft DivisionMünchen 80Germany

Personalised recommendations