The Finite Pointset Method for hypersonic flows in the rarefied gas regime

  • H. Neunzert
  • J. Struckmeier

Abstract

There seems to be no doubt any longer, that it is not recommendable to use the Navier-Stokes equation for the description of the flow around aspace vehicle in altitudes above 80 km. One has to go one step up in the hierarchy and use a kinetic equation, which holds even if the gas is far away from the thermodynamic equilibrium.

Keywords

Entropy Argon Lution Dition rIum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aristov, V.V.; Tscheremissine, F.G.: The conservative aplitting method for solving the Boltzmann equation, USSR Comp. Math. and Math. Phys., 20, 208(1980).Google Scholar
  2. [2]
    Babovsky, H.: A convergence proof for Nanbu'a Boltzmann aimulation scheme, European Journal of Mechanics, B/Fluids, 8, No. 1, 41–55 (1989).Google Scholar
  3. [3]
    Babovsky, H.; Gropengießer, F.; Neunzert, H.; Struckmeier, J.; Wiesen, B.: Application of well-distributed sequences to the numerical simulation of the Boltzmann equation, J. Comp. and Appl. Math., 31, 15–22(1990).Google Scholar
  4. [4]
    Babovsky, H.; Illner, R.: A convergence proof for Nanbu’s simulation method for the Juli Boltzmann equation, SIAM J.Num.Anal., 26, 45–65(1989).Google Scholar
  5. [5]
    Bird, G.A.: Molecular Gas Dynamics, Clarendon Press, Oxford(1976).Google Scholar
  6. [6]
    Bird, G.; Moss, J.: Direct Simulation of transitional flow for hypersonic reentry conditions, AIAA paper no. 84-0223(1984).Google Scholar
  7. [7]
    Caflish, R.: The fluid dynamic limit of the nonlinear Boltzmann equation, Comm. Pure and Appl. Math., 33, 651–666(1980).Google Scholar
  8. [8]
    Cercignani, C.: The Boltzmann equation and ita applicationa, Springer, New York(1988).Google Scholar
  9. [9]
    Cercignani, C.: Scattering kernel for gas-surface interaction, Workshop on Hypersonic flows for reentry problems, Antibes(1990).Google Scholar
  10. [10]
    Chapman, S.; Cowlings, T.G.: The mathematical theory of nonuniform gases, Cambridge University Press, Cambridge(1970).Google Scholar
  11. [11]
    Coron, F.; Golse, F.; Sulem, C.: A classification of well-posed kineiic layer problems, Commun. Pure and Appl. Math., 41, 409–435(1988).Google Scholar
  12. [12]
    Coron, F.: Derivation of slip boundary consitions for the Navier-Stokes.system from the Boltzmann equation, J. Stat. Phys., 54, 829–857(1989).Google Scholar
  13. [13]
    Coron, F.: Applicationa de la théorie cinétique a l' aérodynamique hypersonique: une approche mathematique, These de Doctorat de l'Universite Paris Nord(1990).Google Scholar
  14. [14]
    Elizarova, T.G.; Chetverushkin, RN.: Kinetical consistent finite difference gasdynamic schemce, to appear in Jap. J. Aerospace Science.Google Scholar
  15. [15]
    Faure,: Discrépance de suites associées a un systéme de numération (en dimension s), Acta Arith., XLI, 337–351(1982).Google Scholar
  16. [16]
    Frezzotti, A.; Parani, R.: Direct numerical solution of the Boltzmann eqution for a binary mixture of hard sphere gases, to appear in Meccanica.Google Scholar
  17. [17]
    Gropengießer, F.; Neunzert, H.; Struckmeier, J.; Wiesen, B.: Rarefied gas flow around a disc with different angles of attack, Proc. of the 17th symp. on rarefied gas dynamics, Beylich, A. ed., Weinheim, 546–553(1991).Google Scholar
  18. [18]
    Gropengießer, F.; Neunzert, H.; Struckmeier, J.; Wiesen, B.: Hypersonic flow calculations around a 3d-deltawing at low Knudsen numbers, Proc. of the 17th symp. on rarefied gas dynamics, Beylich, A. ed.,Weinheim, 332–336(1991).Google Scholar
  19. [19]
    Gropengießer, F.; Neunzert, H.; Struckmeier, J.; Wiesen, B.: Rarefied gas flow around a 3d-deltawing, in: Proc. of the workshop on hypersonic flows for reentry problems, part I, Springer(1992).Google Scholar
  20. [20]
    Gropengießer, F.; Neunzert, H.; Struckmeier, J.; Wiesen, B.: Rarefied gas flow around a 3d-deltawing, to appear in the Proc. of the workshop on hypersonic flows for reentry problems, part II.Google Scholar
  21. [21]
    Gropengießer, F.: Gebietszerlegung bei Strömungen im Übergangsbereich zwischen Kinetischer Theorie und Aerodynamik, Ph. D. Thesis, Fachbereich Mathematik, Universität Kaiserslautern(1991).Google Scholar
  22. [22]
    Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math., 2, 84–90(1960).Google Scholar
  23. [23]
    Hammersley, J.M.: Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci., 86, 844–874(1960).Google Scholar
  24. [24]
    Hlawka, E.: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung, Ann. Math. pura et appl., IV, 54(1961).Google Scholar
  25. [25]
    Illner, R.; Pulvirenti, M.: Global validity of the Boltzmann equation for two and threedimensional rare gas in vaccuum, Comm. Math. Phys., 121, 143–146(1989).Google Scholar
  26. [26]
    Ivanov, M.S.; Rogasinsky, S.V.: Analysis of numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics, Sov. J. Numer. Anal. Math. Modelling, 3, 453–465(1988).Google Scholar
  27. [27]
    Kaniel, S.: A kinetic model for the compressible flow equations, Indiana Unniversity Math. Journal, 37(1988).Google Scholar
  28. [28]
    Kuipers, L.; Niederreiter, H.: Uniform distribution of sequences, John Wiley, New York(1974).Google Scholar
  29. [29]
    Landford, O.E.: The evolution of large classical Systems, Proceedings of the 1974 Battelle Rencontres on Dynamical Systems, J. Moser (ed.), Springer Lecture Notes in Physics no. 35, 1–111(1975).Google Scholar
  30. [30]
    Lécot, C.: Low discrepancy sequences for solving the Boltzmann equation, J. Comp. and Appl. Math., 25, 237–249(1989).Google Scholar
  31. [31]
    Legge, H.: Force and heat transfer measurements on a disc at 45°-90° angle of attack in free jet flow using Ar, He, N2, H2 as test gases, DLR Göttingen, report no. IB 222-89 A 07, Göttingen(1989).Google Scholar
  32. [32]
    Legge, H.: Test case VII. 6 rarefied gases: force and heat transfer on a delta wing in rarefied flow, Workshop on hypersonic flow for reentry problems, part II, tome 5, Antibes, 249–284(1991).Google Scholar
  33. [33]
    Maslova, N.B.: Existence and uniqueness theorems for the Boltzmann equation, Dynamical sytems II, Sinai, Y.G. (ed.), Springer, 254–278(1990).Google Scholar
  34. [34]
    Vander Mee, C.V.M.: Stationary solutions ofthe nonlinear Boltzmann equation in a bounded spatial domain, Math. Meth. in Appl. Sciences, 11,471–481(1989).Google Scholar
  35. [35]
    Missmahl, G.: Randwertprobleme bei der Boltzmanngleichung, Diplomarbeit, Universität Kaiserslautern(1990).Google Scholar
  36. [36]
    Nanbu, K.: Direct simulation schemes derived from the Boltzmann equation, J. Phys. Japan, 49, 2042(1980).Google Scholar
  37. [37]
    Niederreiter, H.: Point sets and sequences with small discrepancy, Mh. Math., 104, 273–337(1987).Google Scholar
  38. [38]
    Neunzert, H.; Wiek, J.: Die Theorie der asymptotischen Verteilung und die numerische Lösung von Integrodifferentialgleichungen, Num. Math., 21, 233–243(1973).Google Scholar
  39. [39]
    Schreiner, M.: Gewichtete Teilchen in der Methode der finiten Punktmengen, Diplomarbeit, Universität Kaiserslautern( 1991).Google Scholar
  40. [40]
    Sobol, I.M.: Multidimensional quadrature formulae and Haar functions, Moscow, Nauka(1969).Google Scholar
  41. [41]
    Struckmeier, J.; Pfreundt, F.J.: On the efficiency of simulation methods for the Boltzmann equation on parallel computers, Berichte der Arbeitsgruppe Technomathematik no. 61, Universität Kaiserslautern (1991), to appear in Parallel Computing.Google Scholar
  42. [42]
    Wagner, W.: A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation, preprint, Karl-Weierstrass Institut für Mathematik (1990).Google Scholar
  43. [43]
    Weyl, H.: Über die Gleichverteilung von Zahlen mod 1, Math. Ann., 77(1916).Google Scholar
  44. [44]
    Yen, S.M.: Numerical solution of the nonlinear Boltzmann equation for nonequilibrium gas flow problem, Ann. Rev. Fluid Mech., 16,67–97(1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • H. Neunzert
    • 1
  • J. Struckmeier
    • 1
  1. 1.Department of MathematicsUniversity of KaiserslauternGermany

Personalised recommendations