Skip to main content

Wall Catalytic Recombination and Boundary Conditions in Nonequilibrium Hypersonic Flows — with Applications

  • Chapter
Advances in Hypersonics

Part of the book series: Progress in Scientific Computing ((PSC,volume 8/9))

Abstract

The lecture discusses the meaning of catalysis and its relation to aerodynamic heating in nonequilibrium hypersonic flows. The species equations are described and boundary conditions for them are derived for a multicomponent gas and for a binary gas. Slip effects are included for application of continuum methods to low density flows. Measurement techniques for determining catalytic wall recombination rates are discussed. Among them are experiments carried out in arc jets as well as flow reactors. Diagnostic methods for determining the atom or molecule concentrations in the flow are included. Results are given for a number of materials of interest to the aerospace community, including glassy coatings such as the RCG coating of the Space Shuttle and for high temperature refractory metals such as coated niobium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A,B…:

chemical species

Ca :

number of surface adsorption sites per unit area

Ci :

mass fraction of species i

Cp :

specific heat at constant pressure

D:

dissociation energy

D:

thermal desorption energy

Dij :

diffusion coefficient for multicomponent mixtures

D ij :

binary diffusion coefficient

E:

activation energy per mole

f:

stream function u/ue

f:

velocity distribution function

g:

normalized enthalpy in boundary layer equations

g12:

relative velocity in molecular collision

h:

Planck constant

h:

enthalpy

hDi :

energy per mass of dissociation

hic, hi c :

enthalpy of formation of species i

He :

total enthalpy at edge of boundary layer

j:

index indicating axisymmetric or 2-dimensional

k:

Boltzmann constant

kw :

catalytic recombination rate

L:

length of Orbiter

Le :

Lewis number

m:

mass of particle

M i :

net mass flux of ith species

M i :

incident mass flux og ith species

Mi :

normal mass flux of ith species

n:

number density

P Ay :

normal stress tensor of species A

p:

pressure

p:

chemical reaction order

Pr:

Prandtl number

qc :

chemical energy flux

RN :

nose radius

r:

radial coordinate

Re:

Reynolds number

Sc:

Schmidt number

s:

streamwise coordinate

T:

temperature

t:

time

u:

velocity

u,v,w:

velocity components

Vi :

diffusion velocity of ith species

W:

molecular weight

X:

distance

y:

coordinate normal ro surface

z:

normalized mass fraction Ca/Cae

β:

chemical energy accommodation coefficient

ε:

emittance

ε:

rarefaction parameter \(\sqrt {\operatorname{Re} }\)

η:

normalized normal boundary layer coordinate

γi:

catalytic recombination coefficient

κ:

metric coefficient

λ:

thermal conductivity

σ:

cross section

μ:

viscosity

ρ:

density

σ:

Stefan-Boltzmann constant

τ:

shear stress tensor

ξ:

boundary layer steamwise coordinate

A,B,a,b:

chemical species

a,m:

atom, molecule

e, eq:

equilibrium

e:

edge of boundary layer

FC:

fully catalytic

w:

wall

s:

edge of Knudsen layer

s:

stagnation point

References

  1. Scott, C. D., “Effects of Thermochemistry, Nonequilibrium, and Surface Catalysis on the Design of Hypersonic Vehicles,” in the notes for the 1st Joint Europe-US Short Course on Hypersonics, Dec. 7–11, 1987, Paris, France, edited by R. Glowinski, J. Bertin, and J. Périaux, Birkhauser Boston, Inc., 1988.

    Google Scholar 

  2. Melin, G. A. and Madix, R. J., “Energy Accommodation During Oxygen Atom Recombination on Metal Surfaces,” Faraday Society Transactions, Vol. 67, 1971, pp.198–211.

    Article  Google Scholar 

  3. Halpern, B. and Rosner, D. E., “Chemical Energy Accommodation at Catalyst Surfaces,” Chemical Society of London, Faraday Transactions I. Physical Chemistry, Vol. 74, part 8, 1978, pp. 1883–1912.

    Google Scholar 

  4. Breen, J., Rosner, D. E., et al, “Catalysis Study for Space Shuttle Vehicle Thermal Protection Systems,” NASA CR-134124, 1973.

    Google Scholar 

  5. Scott, C. D., “Catalytic Recombination of Nitrogen and Oxygen on High Temperature Reusable Surface Insulation,” Progress in Astronautics and Aeronautics, Vol. 77, edited by A. L. Crosbie, AIAA, 1981, pp. 192–212.

    Google Scholar 

  6. Rosner, D. E. and Feng, H. H., “Energy Transfer Effects of Excited Molecule Production by Surface Catalyzed Atom Recombination,” J. of the Chemical Society, Faraday Transactions 1, Vol. 70, 1974, pp. 884–907.

    Article  Google Scholar 

  7. Scott C. D., “Wall Boundary Equations with Slip and Catalysis for a Multicomponent Nonequilibrium Gas,” NASA TMX 58111, 1973.

    Google Scholar 

  8. Scott, C. D., “Reacting Shock Layers with Slip and Catalytic Boundary Conditions,” AIAA J., Vol. 13, 1975, pp. 1271–1278.

    Article  Google Scholar 

  9. Gupta, R. N. and Simmonds, A. L., “Hypersonic Low Density Solutions of the Navier-Stokes Equations with Chemical Nonequilibrium and Multicomponent Surface Slip,” AIAA Paper 86-1349, 1986.

    Google Scholar 

  10. Gupta, R. N., Scott, C. D., and Moss, J. N., “Surface Slip Equations for Low Reynolds Number Multicomponent Air Flows,” in Progress in Astronautics and Aeronautics, Vol. 96, edited by H. F. Nelson, 1985.

    Google Scholar 

  11. Scott, C. D., “Effects of Nonequilibrium and Wall Catalysis on Space Shuttle Heat Transfer,” J. of Spacecraft and Rockets, Vol. 22, 1985, pp. 489–499.

    Article  Google Scholar 

  12. Jumper, E. W., R. G. Wilkins, and B. L. Preppernau, “Wall-Catalytic Fluorine Recombination in an HF Laser Nozzle,” AIAA J., Vol. 26, No. 1, Jan. 1988, pp.57–64.

    Article  Google Scholar 

  13. Jumper, E. W., C. J. Ultee, and E. A. Dorko, “A Model for Fluorine Atom Recombination on a Nickel Surface,” Journal of Physical Chemistry, Vol. 84, 1980, pp. 41–50.

    Article  Google Scholar 

  14. Seward, W. A., “A Model for Oxygen Atom recombination on a Silicon Dioxide Surface,” Ph. D. dissertation submitted to the Air Force Institute of Technology, 1985.

    Google Scholar 

  15. Kolodziej, Paul and Stewart, D. A., “Nitrogen Recombination on High-Temperature Reusable Surface Insulation and the Analysis of its Effect on Surface Catalysis,” AIAA-87-1637, 1987.

    Google Scholar 

  16. Seward, W. A., and Jumper, E. J., “Oxygen Recombination on Space Shuttle Thermal-Protection-Tile Like Surfaces,” AIAA-90-0054, 1990.

    Google Scholar 

  17. Willey, R. J., “Mechanistic Model for Catalytic Recombination During Aerobraking Maneuvers,” NASA-CR-185611, 1989.

    Google Scholar 

  18. Swaminathan, P. K., B. C. Garrett, C. S. Murthy, and M. J. Redmon, “Formation and Quenching of Electronically Excited Molecules on Surfaces,” Chemical Dynamics Corp. SBIR Phase I Final Technical Report to NASA-Ames Research Center, Sept. 25, 1986.

    Google Scholar 

  19. Myerson, A. L., “Exposure-Dependent Surface Recombination Efficiencies of Atomic Oxygen,” J. Chem. Phys., Vol. 50, 1969, pp. 1228–1234.

    Article  Google Scholar 

  20. Marinelli, W. J. and Campbell, J. P., “Spacecraft-Metastable Energy Transfer Studies,” Physical Sciences, Inc., Andover, Mass., final Report PSI-G565/TR-595, Contract No. NAS9-17565, 31 July 1986.

    Google Scholar 

  21. Anderson, L. A., “Effect of Surface Catalytic Activity on Stagnation-Point Heat Transfer Rates,” AIAA J., Vol. 11, 1973, pp. 649–656.

    Article  Google Scholar 

  22. Pope, R. B., “Stagnation-Point Convective Heat Transfer in Frozen Boundary Layers, AIAA J., Vol. 6, 1968, pp. 619–626.

    Article  Google Scholar 

  23. Scott, C. D., “Catalytic Recombination of Nitrogen and Oxygen on Iron-Cobalt-Chromia Spinel,” AIAA Paper 83-0585, 1983.

    Google Scholar 

  24. Rakich, J. V., Stewart, D. A. and Lanfranco, M. J., “Catalytic Efficiency of the Space Shuttle Heat Shield,” Progress in Astronautics and Aeronautics, Vol. 85, edited by P. E. Bauer and H. E. Collicutt, AIAA, 1983, pp. 97–122.

    Google Scholar 

  25. Zoby, E. V., Gupta, R. N., and Simmonds, A. L., “Temperature-Dependent Reaction Rate Expressions for Oxygen Recombination,” Progress in Astronautics and Aeronautics, Vol. 96, edited by H. F. Nelson, 1985. pp. 445–464.

    Google Scholar 

  26. Greaves, J. C. and Linnett, J. W., “The Recombination of Oxygen Atoms at Surfaces,” Transactions of the Faraday Society, Vol. 54, 1958, pp. 1323–1330.

    Article  Google Scholar 

  27. Greaves, J. C. and Linnett, J. W., “Recombination of Atoms at Surfaces, Part 5 — Oxygen Atoms at Oxide surfaces,” Transactions of the Faraday Society, Vol. 55, Part 8, 1959, pp. 1346–1354.

    Article  Google Scholar 

  28. Rahman, M. L. and Linnett, J. W., “Recombination of Atoms at Surfaces Part 10 — Nitrogen Atoms at Pyrex Surfaces,” Transactions of the Faraday Society, Vol. 67, Part 1, 1971, pp. 170–198.

    Article  Google Scholar 

  29. Wood, B. J. and Wise, H., “The Interaction of Atoms with Solid Surfaces,” Rarefied Gas Dynamics Supplement 1. edited by L. Talbot, Academic Press, 1961, pp. 51–59.

    Google Scholar 

  30. Dickens, P. G. and Suttcliffe, M. D., “Recombination of Oxygen Atoms at Oxide Surfaces Part 1 Activation Energies of Recombination,” Transactions of the Faraday Society, Vol. 60, 1964, pp. 1185–2308.

    Article  Google Scholar 

  31. Smith, J. Chem. Phys., Vol. 11, 1943, pp. 110.

    Google Scholar 

  32. Marinelli, W. J., “Collisional Quenching of Atoms and Molecules on Spacecraft Thermal Protection Surfaces,” AIAA-88-2667 (1988).

    Google Scholar 

  33. Prok, G. M., Effect of Surface Preparation and Gas Flow on Nitrogen Atom Surface Recombination,” NASA TN D-1090, 1961.

    Google Scholar 

  34. Myerson, A. L., “Mechanisms of Surface Recombination form Step-Function Flows of Atomic Oxygen over Noble Metals,” J. Chem. Phys. Vol. 42, No. 9, 1965, pp. 3270–3276.

    Article  Google Scholar 

  35. Hartunian, W. P. Thompson, and S. Safron, “Measurements of Catalytic Efficiency of Silver for Oxygen Atoms and the 0-02 Diffusion Coefficient,” J. Chem. Phys. Vol. 43, No. 11, (1965), pp. 4003–4006.

    Article  Google Scholar 

  36. Goulard, R. J., “On Catalytic Recombination Rates in Hypersonic Stagnation Heat Transfer,” Jet Propulsion, Vol. 28, 1958, pp. 737–745.

    Google Scholar 

  37. Scott, C. D., “Measured Catalycities of Various Candidate Space Shuttle Thermal Protection System Coatings at Low Temperature,” NASA TN D-7113, 1973.

    Google Scholar 

  38. Stewart, D. A., Rakich, J. V., and Lanfranco, M. J., “Catalytic Surface Effects Experiment on the Space Shuttle,” Progress in Astronautics and Aeronautics, Vol. 82, edited by T. E. Horton, AIAA, 1982, pp. 248–272.

    Google Scholar 

  39. Zwan, A. D., Crooks, R. S., and Whatley, W. J., “Arcjet Validation of Surface Catalycity Using a Viscous Shock-Layer Approach,” in Validation of Computational Fluid Dynamics, AGARD-CP-437, pp. 24-1–24-13, 1988.

    Google Scholar 

  40. Arepalli, S., Yuen, E. H., and Scott, C. D., “Application of Laser Induced Fluorescence for Flow Diagnostics in Arc Jets,” AIAA-90-1763, 1990.

    Google Scholar 

  41. Cunnington, G. R., Robinson, J. C., and Clark, R. K., “Non-Catalytic Coatings for Hypersonic Vehicle Applications,” AIAA-90-1742, 1990.

    Google Scholar 

  42. McCaffrey, B. J., and East, R. A., “Non Equilibrium Stagnation Point Heat Transfer Measurements to Catalytic Surfaces in Shock Heated Air,” in the Proceedings of the 10th International Shock Tube Symposium, Modern Developments in Shock Tube Research, Edited by G. Kamimoto, Shock Tube Research Society, Japan, 1975.

    Google Scholar 

  43. Fay, J. A. and Riddell, F. R., “Theory of Stagnation Point Heat Transfer in Dissociated Air,” J. Aeronautical Sciences, Vol. 25, 1958, pp. 73–85.

    Google Scholar 

  44. Bird, G. A., Molecular Gas Dynamics, Clarendon Press, Oxford, 1976.

    Google Scholar 

  45. Inger, G., “Nonequilibrium Recombination-Dissociation Boundary-Layer Flows Along Arbitrary-Catalytic Hypersonic Vehicles,” AIAA 90-0055, 1990.

    Google Scholar 

  46. Blottner, F. G., “Viscous Shock Layer at the Stagnation Point with Nonequilibrium Air Chemistry,” AIAA J., Vol. 7, 1969, pp. 2281–2287.

    Article  Google Scholar 

  47. Davis, R. T., “Viscous Shock Layer at the Stagnation Point with Nonequilibrium Air Chemistry,” AIAA Paper 70-805, 1970.

    Google Scholar 

  48. Miner, E. W., and Lewis, C. H., “Hypersonic Ionizing Air Viscous Shock-Layer Hows Over Nonanalytical Blunt Bodies,” NASA CR-2550, 1975.

    Google Scholar 

  49. Moss, J.N., “Reacting Viscous-Shock-Layer Solutions with Multicomponent Diffusion and Mass Injection,” NASA TR R-411, June 1974.

    Google Scholar 

  50. Kim, M. D., Swaminathan, S., and Lewis, C. H., “Three Dimensional Nonequilibrium Viscous Flow over the Space Shuttle Orbiter,” Journal of Spacecraft and Rockets, Vol. 21, 1984, pp. 29–35.

    Article  Google Scholar 

  51. Kim, M. D., Swaminathan, S., and Lewis, C. H., “Three Dimensional Viscous Flow over the Shuttle with Surface Catalytic Effects,” AIAA Paper 83-1426, 1983.

    Google Scholar 

  52. Thompson, R. A., “Comparison of Nonequilibrium Viscous-Shock-Layer Solutions with Windward Surface Shuttle Heating Data,” AIAA-87-1473, 1987.

    Google Scholar 

  53. Bhutta, B. A., C. H. Lewis, and F. A. Kautz, “A Fast Fully Iterative Parabolized Navier-Stokes Scheme for Chemically-Reacting Reentry Flows,” AIAA-85-0926, 1985.

    Google Scholar 

  54. Prabhu, D. K., J. C. Tannehill, and J. G. Marvin, “A New PNS Code for Chemical Nonequilibrium Flows,” AIAA J. Vol. 26, No. 7, July 1988, pp. 808–815.

    Article  Google Scholar 

  55. Prabhu, D. K., J. C. Tannehill, and J. G. Marvin, “A New PNS Code for Three-Dimensional Chemically Reacting Rows,” AIAA-87-1472, 1987.

    Google Scholar 

  56. Tannehill, J., J. Ievalts, D. Prabhu, and S. Lawrence, “An Upwind Parabolized Navier-Stokes Code for Chemically Reacting Flows,” AIAA-88-2614, 1988.

    Google Scholar 

  57. Inger, G. R., “Nonequilibrium Hypersonic Stagnation Flow with Arbitrary Surface Catalycity Including Low Reynolds Number Effects,”, Int. J. Heat and Mass Transfer, Vol. 9, 1966, pp. 755–772.

    Article  Google Scholar 

  58. Scott, C. D., Ried, R. C, Maraia, R. J., Li, C.-P., and Derry, S. M., “An AOTV Aerobraking and Thermal Protection Study,” Progress in Astronautics and Aeronautics, Vol. 96, edited by H. F. Nelson, AIAA, 1985, pp. 309–337.

    Google Scholar 

  59. Scott, C. D. “Space Shuttle Laminar Heating with Finite Rate Catalytic Recombination,” Progress in Astronautics and Aeronautics, Vol. 82, edited by T. E. Horton, AIAA, 1982, pp. 273–289.

    Google Scholar 

  60. Rakich, J. V. and Lanfranco, M. J., “Numerical Computation of Space Shuttle Laminar Heating and Surface Streamlines,” J. of Spacecraft and Rocketsydi. 14, 1977, pp. 265–272.

    Article  Google Scholar 

  61. Li, C.-P. “Development of Hypersonic Flow Models and Prediction Methods,” Notes for the 3rd Joint Europe-US Short Course in Hypersonics, Oct 1–5, 1990, Aachen, FRG.

    Google Scholar 

  62. Rakich, J. V., Stewart, D. A., and Lanfranco, M. J., “Catalytic Surface Effects of Space Shuttle Thermal Protection System During Earth Entry of Flights STS-2 Through STS-5,” Paper presented at Langley Conference on Shuttle Performance: Lessons Learned, Hampton VA., March 1983.

    Google Scholar 

  63. Williams, S. D. and Curry, D. M., “An Analytical and Experimental Study for Surface Heat Flux Determination,” Journal of Spacecraft and Rockets, Vol. 14, 1977, pp. 632–637.

    Article  Google Scholar 

  64. Scott, C. D. “Space Shuttle Laminar Heating with Finite Rate Catalytic Recombination,” Progress in Astronautics and Aeronautics, Vol. 82, edited by T. E. Horton, AIAA, 1982, pp. 273–289.

    Google Scholar 

  65. Scott, C. D. and Derry, S. M., “Catalytic Recombination and the Space Shuttle Heat Shield,” Progress in Astronautics and Aeronautics, Vol. 85, edited by P. E. Bauer and H. E. Collicutt, AIAA, 1983, pp. 123–148.

    Google Scholar 

  66. Rakich, J. V. and Lanfranco, M. J., “Numerical Computation of Space Shuttle Laminar Heating and Surface Streamlines,” J. of Spacecraft and Rocketsy Vol. 14, 1977, pp. 265–272.

    Article  Google Scholar 

  67. Tong, H., Buckingham, A. D., and Morse, H. L., “Nonequilibrium Chemistry Boundary Layer Integral Matrix Procedure,” NASA CR 134039, 1973.

    Google Scholar 

  68. Shinn, J. L., Moss, J. N., and Simmonds, A. L., “Viscous-Shock-Layer Heating Analysis for the Shuttle Windward Plane with Surface Finite Catalytic Recombination Rates,” Progress in Astronautics and Aeronautics, Vol. 85, edited by P. E. Bauer and H. E. Collicutt, AIAA, 1983, pp. 149–180.

    Google Scholar 

  69. Goodrich, W. D., Li, C.-P., Houston, C. K. Chiu, P. B., and Olmedo, L., “Numerical Computations of Orbiter Flow fields and Laminar Heating Rates,” J. of Spacecraft and Rockets, Vol. 14, 1977, pp. 257–264.

    Article  Google Scholar 

  70. Zoby, E. V., R. N. Gupta, and A. L. Simmonds, “Temperature Dependent Reaction Rate Expressions for Oxygen Recombination,” Thermal Design of Aeroassisted Orbital Transfer Vehicles, edited by H. F. Nelson, Vol. 96 of Progress in Astronautics and Aeronautics, 1985, pp. 445–465.

    Google Scholar 

  71. Curry, D. M., W. C. Rochelle, D. C. Chao, and P. C. Ting, “Space Shuttle Orbiter Nose Cap Thermal Analysis,” AIAA 86-0388, 1986.

    Google Scholar 

  72. Ting, P. C, W. C Rochelle, and Curry, D. M., “Comparison of Viscous Shock Layer and Boundary Layer Reentry Heating Techniques for Orbiter Nose Cap,” AIAA 86-1350, 1986.

    Google Scholar 

  73. Cheng, H. K., “The Blunt Body Problem in Hypersonic Flow at Low Reynolds Number,” Cornell Aeronautical Lab Rept. AF-1284-A-10, June 1963.

    Google Scholar 

  74. Siemers, P. M., H. Wolf, and M. W. Henry, “Shuttle Entry Air Data System (SEADS) — Flight Verification of an Advanced Air DATA System Concept,” AIAA 88-2104, May 1988.

    Google Scholar 

  75. Ting, P. C, W. C. Rochelle, and D. M. Curry, “Prediction of Aerodynamic Heating and Pressures on Shuttle Entry Air Data System (SEADS) Nose Cap and Comparison with STS-61C Flight Data,” presented at the 1st International Conference on Hypersonic Right in the 21st Century, Sept. 20–23, 1988, Grand Forks, ND.

    Google Scholar 

  76. Blackwell, H. E., Scott, C. D., Hoffman, J. A., Mende, S. B., and Swenson, G. R., “Spectral Measurements of the Space Shuttle Leeside Shock Layer and Wake,” AIAA Paper 86-1262, 1986.

    Google Scholar 

  77. Shinn, J. L, and J. J. Jones, “Chemical Nonequilibrium Effects on Flowfields for Aeroassist Orbital Transfer Vehicles,” AIAA-83-0214, Jan. 1983.

    Google Scholar 

  78. Scott, C. D., Ried, R. C, Maraia, R. J., Li, C.-P., and Derry, S. M., “An AOTV Aerobraking and Thermal Protection Study,” Progress in Astronautics and Aeronautics, Vol. 96, edited by H. F. Nelson, AIAA, 1985, pp. 309–337.

    Google Scholar 

  79. Stewart, D. A. and P. Kolodziej, “Wall Catalysis Experiment on AFE,” AIAA 88-2674, June, 1988.

    Google Scholar 

  80. Ting, P. C., W. C. Rochelle, S. R. Mueller, J. E. Colovin, C. D. Scott, and D. M. Curry, “Development of AFE Aerobrake Aerothermodynamic Data Book,” AIAA-89-1734,June, 1989.

    Google Scholar 

  81. Stewart, D. A., W. D. Henline, P. Kolodziej, and E. M. W. Pincha, “Effect of Surface Catalysis on Heating to Ceramic Coated Thermal Protection Systems for Transatmospheric Vehicles,” AIAA-88-2706, June 1988.

    Google Scholar 

  82. Rakich, J. V. and H. E. Bailey, “Computation of Nonequilibrium, Supersonic Three-Dimensional Inviscid Flow Over Blunt Bodies,” AIAA J., Vol 21, No. 6, June 1983, pp. 834–841.

    Article  Google Scholar 

  83. Zoby, E. V., K. P. Lee, R. N. Gupta, R. A. Thompson, and A. L. Simmonds, “Viscous Shock-Layer Solutions with Nonequilibrium Chemistry for Hypersonic Hows Past Slender Bodies,” AIAA-88-2709, June, 1988.

    Google Scholar 

  84. Shih, P. K., A. D. Zwan, and M. N. Kelley, “Thermal Protection System Optimization for a Hypersonic Aerospace Vehicle,” AIAA-88-2739, June, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scott, C.D. (1992). Wall Catalytic Recombination and Boundary Conditions in Nonequilibrium Hypersonic Flows — with Applications. In: Bertin, J.J., Periaux, J., Ballmann, J. (eds) Advances in Hypersonics. Progress in Scientific Computing, vol 8/9. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0371-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0371-1_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6730-0

  • Online ISBN: 978-1-4612-0371-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics